[1]
|
Steullet, P., Cabunqcal, J.H., Coyle, J., et al. (2017) Oxidative Stress-Driven Parvalbumin Interneuron Impairment as a Common Mechanism in Models of Schizophrenia. Molecular Psychiatry, 22, 936-943. https://doi.org/10.1038/mp.2017.47
|
[2]
|
Tseng, K. and O’Donnell, P. (2007) Dopamine Modulation of Prefrontal Cortical Interneurons Changes during Adolescence. Cerebral Cortex, 17, 1235-1240. https://doi.org/10.1093/cercor/bhl034
|
[3]
|
Weinberger, D.R. (1987) Implications of Normal Brain Development for the Pathogenesis of Schizophrenia. Archives of General Psychiatry, 44, 660-669. https://doi.org/10.1001/archpsyc.1987.01800190080012
|
[4]
|
Schmidt, M.J. and Mimics, K. (2015) Neurodevelopment, GABA System Dysfunction, and Schizophrenia. Neuropsychopharmacology, 40, 190-206. https://doi.org/10.1038/npp.2014.95
|
[5]
|
Hu, H., Gan, J. and Jonas, P. (2014) Interneurons. Fast-Spiking, Par-valbumin GABAergic Interneurons: From Cellular Design to Microcircuit Function. Science, 345, Article ID: 1255263. https://doi.org/10.1126/science.1255263
|
[6]
|
Tomasella, E., Bechelli, L., Ogando, M.B., et al. (2018) Deletion of Dopamine D Receptors from Parvalbumin Interneurons in Mouse Causes Schizophrenia-Like Phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 115, 3476-3481. https://doi.org/10.1073/pnas.1719897115
|
[7]
|
Cardin, J.A., Carlen, M., Meletis, K., et al. (2009) Driving Fast-Spiking Cells Induces Gamma Rhythm and Controls Sensory Responses. Nature, 459, 663-667. https://doi.org/10.1038/nature08002
|
[8]
|
Salinas, E. and Sejnowski, T. (2001) Correlated Neuronal Activity and the Flow of Neural Information. Nature Reviews Neuroscience, 2, 539-550. https://doi.org/10.1038/35086012
|
[9]
|
Orduz, D., Maldonado, P.P., Balia, M., et al. (2015) Interneurons and Oligoden-drocyte Progenitors form a Structured Synaptic Network in the Developing Neocortex. Elife, 22, 4. https://doi.org/10.7554/eLife.06953
|
[10]
|
Stedehouder, J. and Kushner, S. (2017) Myelination of Parvalbumin In-terneurons: A Parsimonious Locus of Pathophysiological Convergence in Schizophrenia. Molecular Psychiatry, 22, 4-12. https://doi.org/10.1038/mp.2016.147
|
[11]
|
Carlen, M., Meletis, K., Sieqle, J.H., et al. (2012) A Critical Role for NMDA Receptors in Parvalbumin Interneurons for Gamma Rhythm Induction and Behavior. Molecular Psychiatry, 17, 537-548. https://doi.org/10.1038/mp.2011.31
|
[12]
|
Tyson, J.A. and Anderson, S.A. (2014) GABAergic Interneu-ron Transplants to Study Development and Treat Disease. Trendsin Neurosciences, 37, 169-177. https://doi.org/10.1016/j.tins.2014.01.003
|
[13]
|
Tricoire, L., Pelkey, K.A., Erkkila, B.E., et al. (2011) A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity. Journal of Neuroscience, 31, 10948-10970. https://doi.org/10.1523/JNEUROSCI.0323-11.2011
|
[14]
|
Powell, S.B., Sejnowski, T.J. and Behrens, M.M. (2012) Behavioral and Neurochemical Consequences of Cortical Oxidative Stress on Parvalbumin-Interneuron Maturation in Rodent Models of Schizophrenia. Neuropharmacology, 62, 1322-1331. https://doi.org/10.1016/j.neuropharm.2011.01.049
|
[15]
|
Köppe, G., Bruckner, G., Hartiq, W., Delpech, B. and Bigl, V. (1997) Characterization of Proteoglycan-Containing Perineuronal Nets by Enzymatic Treatments of Rat Brain Sections. The Histochemical Journal volume, 29, 11-20. https://doi.org/10.1023/A:1026408716522
|
[16]
|
Härtiq, W., Sinqer, A., Grosche, J., et al. (2001) Perineuronal Nets in the Rat Medial Nucleus of the Trapezoid Body Surround Neurons Immunoreactive for Various Amino Acids, Calcium-Binding Proteins and the Potassium Channel Subunit Kv3.1b. Brain Research, 899, 123-133. https://doi.org/10.1016/S0006-8993(01)02211-9
|
[17]
|
Wegner, F., Hartiq, W., Brinqmann, A., et al. (2003) Diffuse Perineuronal Nets and Modified Pyramidal Cells Immunoreactive for Glutamate and the GABA(A) Receptor Alpha1 Subunit form a Unique Entity in Rat Cerebral Cortex. Experimental Neurology, 184, 705-714. https://doi.org/10.1016/S0014-4886(03)00313-3
|
[18]
|
Miyata, S., Nishmura, Y. and Nakashima, T. (2007) Perineuronal Nets Protect against Amyloid Beta-Protein Neurotoxicity in Cultured Cortical Neurons. Brain Re-search, 1150, 200-206. https://doi.org/10.1016/j.brainres.2007.02.066
|
[19]
|
Härtig, W., Derouiche, A., Welt, K., et al. (1999) Cortical Neurons Immunoreactive for the Potassium Channel Kv3.1b Subunit Are Predominantly Surrounded by Perineuronal Nets Presumed as a Buffering System for Cations. Brain Research, 842, 15-29. https://doi.org/10.1016/S0006-8993(99)01784-9
|
[20]
|
Carulli, D., Kwok, J.C. and Pizzorusso, T. (2016) Perineu-ronal Nets and CNS Plasticity and Repair. Neural Plasticity, 2016, Article ID: 4327082. https://doi.org/10.1155/2016/4327082
|
[21]
|
Carlsson, A. and Lindqvist, M. (1963) Effect of Chlorpromazine or Haloperidol on Formation of 3 Methoxytyramine and Normetanephrine in Mouse Brain. Acta Pharmacologica et Toxi-cologica, 20, 140-144. https://doi.org/10.1111/j.1600-0773.1963.tb01730.x
|
[22]
|
Seeman, P. and Lee, T. (1975) Antipsychotic Drugs: Direct Correlation between Clinical Potency and Presynaptic Action on Dopamine Neurons. Sci-ence, 188, 1217-1219. https://doi.org/10.1126/science.1145194
|
[23]
|
Davis, K., Kahn, R.S., Ko, G., et al. (1991) Dopamine in Schizophrenia: A Review and Reconceptualization. American Journal of Psychiatry, 148, 1474-1486. https://doi.org/10.1176/ajp.148.11.1474
|
[24]
|
Khan, A., de Jong, L.A., Kameski, M.E., et al. (2017) Adolescent GBR12909 Exposure Induces Oxidative Stress, Disrupts Parvalbumin-Positive Interneurons, and Leads to Hyperactivity and Impulsivity in Adult Mice. Neuroscience, 345, 166-175. https://doi.org/10.1016/j.neuroscience.2016.11.022
|
[25]
|
Graham, D.L., Durai, H.H., Garden, J.D., et al. (2015) Loss of Dopamine D2 Receptors Increases Parvalbumin-Posi- tive Interneurons in the Anterior Cingulate Cortex. ACS Chemical Neuroscience, 6, 297-305. https://doi.org/10.1021/cn500235m
|
[26]
|
Kim, S.Y., Choi, K.C., Chanq, M.S., et al. (2006) The Dopamine D2 Receptor Regulates the Development of Dopaminergic Neurons via Extracellular Sig-nal-Regulated Kinase and Nurr1 Activation. Journal of Neuroscience, 26, 4567- 4576. https://doi.org/10.1523/JNEUROSCI.5236-05.2006
|
[27]
|
Sanacora, G., Mason, G.F., Rothman, D.L., et al. (1999) Reduced Cortical Gamma-Aminobutyric Acid Levels in Depressed Patients Determined by Proton Magnetic Resonance Spectroscopy. Archives of General Psychiatry, 56, 1043- 1047. https://doi.org/10.1001/archpsyc.56.11.1043
|
[28]
|
Khundakar, A., Morris, C. and Thomas, A.J. (2011) The Immuno-histochemical Examination of GABAergic Interneuron Markers in the Dorsolateral Prefrontal Cortex of Patients with Late-Life Depression. International Psychogeriatrics, 23, 644-653. https://doi.org/10.1017/S1041610210001444
|
[29]
|
Bolam, J.P., Hanley, J.J., Booth, P.A. and Bevan, M.D. (2000) Synaptic Organisation of the Basal Ganglia. Journal of Anatomy, 196, 527-542. https://doi.org/10.1046/j.1469-7580.2000.19640527.x
|
[30]
|
Kravitz, A.V., Freeze, B.S., Parker, P.R., et al. (2010) Reg-ulation of Parkinsonian Motor Behaviours by Optogenetic Control of Basal Ganglia Circuitry. Nature, 466, 622-626. https://doi.org/10.1038/nature09159
|
[31]
|
Trevitt, J.T., Morrow, J. and Marshall, J.F. (2005) Dopamine Manipula-tion Alters Immediate-Early Gene Response of Striatal Parvalbumin Interneurons to Cortical Stimulation. Brain Research, 1035, 41-50. https://doi.org/10.1016/j.brainres.2004.11.039
|
[32]
|
Gittis, A.H., Hanq, G.B., LaDow, E.S., et al. (2011) Rapid Target-Specific Remodeling of Fast-Spiking Inhibitory Circuits after Loss of Dopamine. Neuron, 71, 858-868. https://doi.org/10.1016/j.neuron.2011.06.035
|
[33]
|
Chu, H.Y., Ito, W., Li, J. and Morozov, A. (2012) Target-Specific Suppression of GABA Release from Parvalbumin Interneurons in the Basolateral Amygdala by Dopa-mine. Journal of Neuroscience, 32, 14815-14820. https://doi.org/10.1523/JNEUROSCI.2997-12.2012
|
[34]
|
Traylenis, S.F., Wolluth, L.P., McBain, C.J., et al. (2010) Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 62, 405-496. https://doi.org/10.1124/pr.109.002451
|
[35]
|
Hashimoto, K. (2014) Targeting of NMDA Receptors in New Treatments for Schizophrenia. Expert Opinion on Therapeutic Targets, 18, 1049-1063. https://doi.org/10.1517/14728222.2014.934225
|
[36]
|
Javitt, D.C. (1987) Negative Schizophrenic Symptomatology and the PCP (Phencyclidine) Model of Schizophrenia. The Hillside Journal of Clinical Psychiatry, 9, 12-35.
|
[37]
|
Olney, J.W., Newcomer, J.W. and Farber, N.B. (1999) NMDA Receptor Hypofunction Model of Schizophrenia. Journal of Psychiatric Research, 33, 523-533. https://doi.org/10.1016/S0022-3956(99)00029-1
|
[38]
|
Stansfield, K.H., Ruby, K.N., Soares, B.D., et al. (2015) Early-Life Lead Exposure Recapitulates the Selective Loss of Parvalbumin-Positive GABAergic Interneurons and Subcortical Dopamine System Hyperactivity Present in Schizophrenia. Translational Psy-chiatry, 5, e522. https://doi.org/10.1038/tp.2014.147
|
[39]
|
Gandal, M.J., Sisti, J., Klook, K., et al. (2012) GABAB-Mediated Rescue of Altered Excitatory-Inhibitory Balance, Gamma Synchrony and Behavioral Deficits Fol-lowing Constitutive NMDAR-Hypofunction. Translational Psychiatry, 2, e142. https://doi.org/10.1038/tp.2012.69
|
[40]
|
Belforte, J.E., Zsiros, V., Sklar, E.R., et al. (2010) Postnatal NMDA Re-ceptor Ablation in Corticolimbic Interneurons Confers Schizophrenia-Like Phenotypes. Nature Neuroscience, 13, 76-83. https://doi.org/10.1038/nn.2447
|
[41]
|
Homayoun, H. and Moghaddam, B. (2007) NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons. Journal of Neuroscience, 27, 11496-11500. https://doi.org/10.1523/JNEUROSCI.2213-07.2007
|
[42]
|
Collins, S.A., Gudelsky, G.A. and Yamamoto, B.K. (2015) MDMA-Induced Loss of Parvalbumin Interneurons within the Dentate Gyrus Is Mediated by 5HT2A and NMDA Receptors. European Journal of Pharmacology, 761, 95-100. https://doi.org/10.1016/j.ejphar.2015.04.035
|
[43]
|
Emiliani, F.E., Sedlak, T.W. and Sawa, A. (2014) Oxida-tive Stress and Schizophrenia: Recent Breakthroughs from an Old Story. Current Opinion in Psychiatry, 27, 185-190. https://doi.org/10.1097/YCO.0000000000000054
|
[44]
|
Radi, R. (2018) Oxygen Radicals, Nitric Oxide, and Per-oxynitrite: Redox Pathways in Molecular Medicine. Proceedings of the National Academy of Sciences of the United States of America, 115, 5839-5848. https://doi.org/10.1073/pnas.1804932115
|
[45]
|
Ng, F., Berk, M., Dean, O. and Bush, A.I. (2008) Oxidative Stress in Psychiatric Disorders: Evidence Base and Therapeutic Implications. International Journal of Neuropsychopharmacology, 11, 851-876. https://doi.org/10.1017/S1461145707008401
|
[46]
|
Cabungcal, J.H., Steullet, P., Kraftsik, R., Cuenod, M. and Do, K.Q. (2013) Early-Life Insults Impair Parvalbumin Interneurons via Oxi-dative Stress: Reversal by N-Acetylcysteine. Biological Psychiatry, 73, 574-482. https://doi.org/10.1016/j.biopsych.2012.09.020
|
[47]
|
Walter, P.B., Knutson, M.D., Paler-Martines, A., et al. (2002) Iron Deficiency and Iron Excess Damage Mitochondria and Mitochondrial DNA in Rats. Proceedings of the National Academy of Sciences of the United States of America, 99, 2264-2269. https://doi.org/10.1073/pnas.261708798
|
[48]
|
Callahan, L.S., Thibert, K.A., Wobken, J.D. and Georgieff, M.K. (2013) Early-Life Iron Deficiency Anemia Alters the Development and Long-Term Expression of Parvalbumin and Perineuronal Nets in the Rat Hippocampus. Developmental Neuroscience, 35, 427-436. https://doi.org/10.1159/000354178
|
[49]
|
Radonjic, N.V., Knezevic, I.D., Vilimanovich, U., et al. (2010) Decreased Glutathione Levels and Altered Antioxidant Defense in an Animal Model of Schizophrenia: Long-Term Effects of Peri-natal Phencyclidine Administration. Neuropharmacology, 58, 739-745. https://doi.org/10.1016/j.neuropharm.2009.12.009
|
[50]
|
Behrens, M.M., Ali, S.S., Dao, D.N., et al. (2007) Keta-mine-Induced Loss of Phenotype of Fast-Spiking Interneurons Is Mediated by NADPH-Oxidase. Science, 318, 1645-1647. https://doi.org/10.1126/science.1148045
|
[51]
|
Lodge, D.J. and Grace, A.A. (2007) Aberrant Hippo-campal Activity Underlies the Dopamine Dysregulation in an Animal Model of Schizophrenia. Journal of Neuroscience, 27, 11424-11430. https://doi.org/10.1523/JNEUROSCI.2847-07.2007
|
[52]
|
Lodge, D.J. and Grace, A.A. (2011) Hippocampal Dysregulation of Dopamine System Function and the Pathophysiology of Schizophrenia. Trends in Phar-macological Sciences, 32, 507-513. https://doi.org/10.1016/j.tips.2011.05.001
|
[53]
|
Grace, A.A. and Gomes, F.V. (2019) The Circuitry of Dopamine System Regulation and Its Disruption in Schizophrenia: Insights into Treatment and Prevention. Schizophrenia Bulletin, 45, 148-157. https://doi.org/10.1093/schbul/sbx199
|
[54]
|
Lodge, D.J., Behrens, M.M. and Grace, A.A. (2009) A Loss of Parvalbumin-Containing Interneurons Is Associated with Diminished Oscilla-tory Activity in an Animal Model of Schizophrenia. Journal of Neuroscience, 29, 2344-2354. https://doi.org/10.1523/JNEUROSCI.5419-08.2009
|
[55]
|
Moore, H., Jentsch, J.D., Ghajarnia, M., Geyer, M.A. and Grace, A.A. (2006) A Neurobehavioral Systems Analysis of Adult Rats Exposed to Methyla-zoxymethanol Acetate on E17: Implications for the Neuropathology of Schizophrenia. Biological Psychiatry, 60, 253-264. https://doi.org/10.1016/j.biopsych.2006.01.003
|
[56]
|
Boley, A.M., Perez, S.M. and Lodqe, D.J. (2014) A Funda-mental Role for Hippocampal Parvalbumin in the Dopamine Hyperfunction Associated with Schizophrenia. Schizophre-nia Research, 157, 238-243. https://doi.org/10.1016/j.schres.2014.05.005
|
[57]
|
Glickstein, S.B., Moore, H., Slowinska, B., et al. (2007) Selective Cortical Interneuron and GABA Deficits in Cyclin D2-Null Mice. Development, 134, 4083-4093. https://doi.org/10.1242/dev.008524
|
[58]
|
Glickstein, S.B., Monaqhan, J.A., Koeller, H.B., Jones, T.K. and Ross, M.E. (2009) Cyclin D2 Is Critical for Intermediate Progenitor Cell Proliferation in the Embryonic Cortex. Journal of Neuroscience, 29, 9614-9624. https://doi.org/10.1523/JNEUROSCI.2284-09.2009
|
[59]
|
Gilani, A.I., Chohan, M.O., Inan, M., et al. (2014) Interneuron Precursor Transplants in Adult Hippocampus Reverse Psycho-sis-Relevant Features in a Mouse Model of Hippocampal Disinhibition. Proceedings of the National Academy of Sciences of the United States of America, 111, 7450-7455. https://doi.org/10.1073/pnas.1316488111
|
[60]
|
Lazarus, M.S., Krishnan, K. and Huang, Z.J. (2015) GAD67 Deficiency in Parvalbumin Interneurons Produces Deficits in Inhibitory Transmission and Network Disinhibition in Mouse Prefrontal Cortex. Cerebral Cortex, 25, 1290-1296. https://doi.org/10.1093/cercor/bht322
|
[61]
|
Amitai, N., Kuczenski, R., Behrens, M.M., et al. (2012) Repeated Phencyclidine Administration Alters Glutamate Release and Decreases GABA Markers in the Prefrontal Cortex of Rats. Neuropharmacology, 62, 1422-1431. https://doi.org/10.1016/j.neuropharm.2011.01.008
|
[62]
|
Zhou, Z., Zhang, G., Li, X., et al. (2015) Loss of Phenotype of Parvalbumin Interneurons in Rat Prefrontal Cortex Is Involved in Antidepres-sant- and Propsychotic-Like Behaviors Following Acute and Repeated Ketamine Administration. Molecular Neurobiolo-gy, 51, 808-819. https://doi.org/10.1007/s12035-014-8798-2
|
[63]
|
Emery, B. (2010) Regulation of Oligodendro-cyte Differentiation and Myelination. Science, 330, 779-782. https://doi.org/10.1126/science.1190927
|
[64]
|
Boulanger, J. and Messier, C. (2017) Oligodendrocyte Progenitor Cells Are Paired with GABA Neurons in the Mouse Dorsal Cortex: Unbiased Stereological Analysis. Neu-roscience, 362, 127-140. https://doi.org/10.1016/j.neuroscience.2017.08.018
|
[65]
|
Zonouzi, M., Scafidi, J., Li, P., et al. (2015) GABAergic Regulation of Cerebellar NG2 Cell Development Is Altered in Perinatal White Matter Injury. Na-ture Neuroscience, 18, 674-682. https://doi.org/10.1038/nn.3990
|
[66]
|
Davis, K.L., Stewart, D.G., Friedman, J.I., et al. (2003) White Matter Changes in Schizophrenia: Evidence for Myelin-Related Dysfunction. Archives of General Psychiatry, 60, 443-456. https://doi.org/10.1001/archpsyc.60.5.443
|
[67]
|
Xu, H. and Li, X.M. (2011) White Mat-ter Abnormalities and Animal Models Examining a Putative Role of Altered White Matter in Schizophrenia. Schizophre-nia Research and Treatment, 2011, Article ID: 826976. https://doi.org/10.1155/2011/826976
|
[68]
|
Hakak, Y., Walker, J.R., Li, C., et al. (2001) Genome-Wide Expression Analysis Reveals Dysregulation of Myelination-Related Genes in Chronic Schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 4746-4751. https://doi.org/10.1073/pnas.081071198
|
[69]
|
Tishler, T.A., Bartzokis, G., Lu, P.H., et al. (2018) Ab-normal Trajectory of Intracortical Myelination in Schizophrenia Implicates Whitematter in Disease Pathophysiology and the Therapeutic Mechanism of Action of Antipsychotics. Biological Psychiatry: Cognitive Neuroscience and Neuroim-aging, 3, 454-462. https://doi.org/10.1016/j.bpsc.2017.03.007
|
[70]
|
Ersland, K.M., Skrede, S., Stansberg, C. and Steen, V.M. (2017) Subchronic Olanzapine Exposure Leads to Increased Expression of Myelination-Related Genes in Rat Fronto-Medial Cortex. Translational Psychiatry, 7, 1262. https://doi.org/10.1038/s41398-017-0008-3
|
[71]
|
Fang, F., Zhang, H., Zhang, Y., et al. (2013) Antipsychot-ics Promote the Differentiation of Oligodendrocyte Progenitor Cells by Regulating Oligodendrocyte Lineage Transcrip-tion Factors 1 and 2. Life Sciences, 93, 429-434. https://doi.org/10.1016/j.lfs.2013.08.004
|
[72]
|
Xu, H., Yang, H.J. and Li, X.M. (2014) Differential Effects of Antipsychotics on the Development of Rat Oligodendrocyte Precursor Cells Exposed to Cuprizone. European Archives of Psychiatry and Clinical Neuroscience, 264, 121-129. https://doi.org/10.1007/s00406-013-0414-3
|