|
[1]
|
Aranda, S., Laguna, A. and de la Luna, S. (2011) DYRK Family of Protein Kinases: Evolutionary Relationships, Biochemical Properties, and Functional Roles. The FASEB Journal, 25, 449-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Alvarez, M., Estivill, X. and de la Luna, S. (2003) DYRK1A Accumulates in Splicing Speckles through a Novel Targeting Signal and Induces Speckle Disassembly. Journal of Cell Science, 116, 3099-3107. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sunke Himpel, P.P., Eirmbter, K., Czajkowska, H., Sayed, M., Packman, L.C., Blundell, T., Kentrup, H., Grotzinger, J., Joost, H.-G. and Becker, W. (2001) Identification of the Autophosphorylation Sites and Characterization of Their Effects in the Protein Kinase DYRK1A. The Biochemical Journal, 359, 497-507. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fernandez-Martinez, P., Zahonero, C. and Sanchez-Gomez, P. (2015) DYRK1A: The Double-Edged Kinase as a Protagonist in Cell Growth and Tumorigenesis. Molecular and Cellular Oncology, 2, e970048. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Martı́, E., Altafaj, X., Dierssen, M., et al. (2003) Dyrk1A Expres-sion Pattern Supports Specific Roles of This Kinase in the Adult Central Nervous System. Brain Research, 964, 250-263. [Google Scholar] [CrossRef]
|
|
[6]
|
Michiyo Okui, T.I., Morita, K., Funakoshi, E., Ito, F., Ogita, K., Yoneda, Y., Kudoh, J. and Shimizu, N. (1999) High-Level Expression of the Mnb/DYRK1A Gene in Brain and Heart during Rat Early Development. Genomics, 62, 165-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Jerzy Wegiela, I.K., Nowickia, K., Frackowiaka, J., Dowjata, K., Silvermanb, W.P., Reisbergc, B., deLeonc, M., Wisniewskic, T., Adayevd, T., Chen-Hwangd, M.-C. and Hwangd, Y.-W. (2004) Cell Type- and Brain Structure-Specific Patterns of Distribution of Mini-brain Kinase in Human Brain. Brain Research, 1010, 69-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Pamela, G.S., Lochhead, A., Morrice, N. and Cleghon, V. (2005) Activation-Loop Autophosphorylation Is Mediated by a Novel Transitional Intermediate Form of DYRKs. Cell, 121, 925-936. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Park, J., Song, W.J. and Chung, K.C. (2009) Function and Regulation of Dyrk1A: Towards Understanding Down Syndrome. Cellular and Mollecular Life Science, 66, 3235-3240. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ramkumar, A., Jong, B.Y. and Ori-McKenney, K.M. (2018) ReMAP-ping the Microtubule Landscape How Phosphorylation Dictates the Activities of Microtubule-Associated Proteins. Deve-lopmental Dynamics, 247, 138-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Azorsa, R.H.R.D.O., Frost, D., Hoovet, B.M., Brautigam, G.R., Dickey, C., Beaudry, C., Basu, G.D., Holz, D.R., Hernandez, J.A., Bisanz, K.M., Gwinn, L., Grover, A., Rogers, J., Reiman, E.M., Hut-ton, M., Stephan, D.A., Mousses, S. and Dunckley, T. (2010) High-Content siRNA Screening of the Kinome Identifies Ki-nases Involved in Alzheimer’s Disease-Related Tau Hyperphosphorylation. BMC Genomics, 11, 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ryoo, S.-R., Cho, H.-J., Lee, H.W., Jeong, H.K., Radnaabazar, C., Kim, Y.-S., Kim, M.-J., Son, M.-Y., Seo, H., Chung, S.-H. and Song, W.-J. (2008) Dual-Specificity Tyrosine(Y)-phosphorylation Regulated Kinase 1A-Mediated Phosphorylation of Amyloid Precursor Protein: Evidence for a Functional Link between Down Syndrome and Alzheimer’s Disease. Journal of Neurochemistry, 104, 1333-1344. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Guedj, F., Pereira, P.L., Najas, S., et al. (2012) DYRK1A: A Master Regulatory Protein Controlling Brain Growth. Neurobiology of Disease, 46, 190-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Latour, A., Gu, Y., Kassis, N., et al. (2019) LPS-Induced Inflammation Abolishes the Effect of DYRK1A on IkB Stability in the Brain of Mice. Molecular Neurobiology, 56, 963-975. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Smith, B., Medda, F., Gokhale, V., et al. (2012) Recent Advances in the Design, Synthesis, and Biological Evaluation of Selective DYRK1A Inhibitors: A New Avenue for a Disease Modifying Treatment of Alzheimer’s? ACS Chemical Neuroscience, 3, 857-872. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wegiel, J., Gong, C.X. and Hwang, Y.W. (2011) The Role of DYRK1A in Neurodegenerative Diseases. The FEBS Journal, 278, 236-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Uhl, K.L., Schultz, C.R., Geerts, D., et al. (2018) Harmine, a Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase (DYRK) Inhibitor Induces Caspase-Mediated Apoptosis in Neuroblastoma. Cancer Cell International, 18, 82. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ackeifi, C., Swartz, E., Kumar, K., et al. (2020) Pharmacologic and Genetic Approaches Define Human Pancreatic Beta Cell Mitogenic Targets of DYRK1A Inhibitors. JCI Insight, 5, e132594. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Belgardt, B.F. and Lammert, E. (2016) DYRK1A: A Promising Drug Target for Islet Transplant-Based Diabetes Therapies. Diabetes, 65, 1496-1498. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Courtney Ackeifi, P.W., Karakose, E., Fox Manning, J.E., González, B.J., Liu, H.T., Wilson, J., Swartz, E., Berrouet, C., Li, Y.S., Kumar, K., MacDonald, P.E., Sanchez, R., Thorens, B., DeVita, R., Ho-mann, D., Egli, D., Scott, D.K., Garcia-Ocaña, A. and Stewart, A.F. (2020) GLP-1 Receptor Agonists Synergize with DYRK1A Inhibitors to Potentiate Functional Human β Cell Regeneration. Science Translational Medicine, 12, eaaw9996. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wieslaw, T.A., Dowjata, K., Kuchna, I., Nowicki, K., Palminiello, S., Hwang, Y.W. and Wegiel, J. (2007) Trisomy-Driven Overexpression of DYRK1A Kinase in the Brain of Subjects. Neu-roscience Letters, 413, 77-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Walter Becker, U.S. and Tejedor, F.J. (2014) DYRK1A_ A Potential Drug Target for Multiple Down Syndrome Neuropathologies. CNS & Neurological Disorders-Drug Targets, 13, 26-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Feki, A. and Hibaoui, Y. (2018) DYRK1A Protein, a Promising Therapeutic Target to Improve Cognitive Deficits in Down Syndrome. Brain Sciences, 8, 187. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Selkoe, D.J. (2002) Alzheimer’s Disease Is a Synaptic Failure. Science, 298, 789-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sakono, M. and Zako, T. (2010) Amyloid Oligomers: Formation and Toxicity of Abeta Oligomers. The FEBS Journal, 277, 1348-1358. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kim, E.J., Sung, J.Y., Lee, H.J., et al. (2006) Dyrk1A Phos-phorylates Alpha-Synuclein and Enhances Intracellular Inclusion Formation. The Journal of Biological Chemistry, 281, 33250-33257. [Google Scholar] [CrossRef]
|
|
[27]
|
Cavallarin, N., Vicario, M. and Negro, A. (2010) The Role of Phosphorylation in Synucleinopathies: Focus on Parkinson’s Disease. CNS & Neurological Disorders-Drug Targets, 9, 471-481. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Fan, K., Tang, B.S., Wang, Y.Q., et al. (2016) The GBA, DYRK1A and MS4A6A Polymorphisms Influence the Age at Onset of Chinese Parkinson Patients. Neuroscience Letters, 621, 133-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cen, L., Xiao, Y., Wei, L., et al. (2016) Association of DYRK1A Polymorphisms with Sporadic Parkinson’s Disease in Chinese Han Population. Neuroscience Letters, 632, 39-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ferrer, I., Barrachina, M., Puig, B., et al. (2005) Constitutive Dyrk1A Is Abnormally Expressed in Alzheimer Disease, Down Syndrome, Pick Disease, and Related Transgenic Models. Neurobi-ology of Disease, 20, 392-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Kang, J.E., Choi, S.A., Park, J.B., et al. (2005) Regulation of the Proa-poptotic Activity of Huntingtin Interacting Protein 1 by Dyrk1 and Caspase-3 in Hippocampal Neuroprogenitor Cells. Journal of Neuroscience Research, 81, 62-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bain, J., Plater, L., Elliott, M., et al. (2007) The Selectivity of Protein Kinase Inhibitors: A Further Update. Biochemical Journal, 408, 297-315. [Google Scholar] [CrossRef]
|
|
[33]
|
Yamamoto, N., Shibata, M., Ishikuro, R., et al. (2017) Epigallocatechin Gallate Induces Extracellular Degradation of Amyloid Beta-Protein by Increasing Neprilysin Secretion from Astrocytes through Activation of ERK and PI3K Pathways. Neuroscience, 362, 70-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
De la Torre, R., De Sola, S., Pons, M., et al. (2014) Epigallocatechin-3-Gallate, a DYRK1A Inhibitor, Rescues Cognitive Deficits in Down Syndrome Mouse Models and in Humans. Molecular Nutrition & Food Research, 58, 278-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
De Toma, I., Ortega, M., Aloy, P., et al. (2019) DYRK1A Overexpression Alters Cognition and Neural-Related Proteomic Pathways in the Hippocampus That Are Rescued by Green Tea Extract and/or Environmental Enrichment. Frontiers in Molecular Neuroscience, 12, 272. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
De la Torre, S., Hernandez, G., Farré, M., Pujol, J., Rodriguez, J., Es-padaler, J.M., Langohr, K., Cuenca-Royo, A., Principe, A., et al. (2016) Safety and Efficacy of Cognitive Training plus Epi-gallocatechin-3-Gallate in Young Adults with Down’s Syndrome (TESDAD): A Double-Blind, Randomised, Place-bo-Controlled, Phase 2 Trial. The Lancet Neurology, 15, 810-810. [Google Scholar] [CrossRef]
|
|
[37]
|
Gockler, N., Jofre, G., Papadopoulos, C., et al. (2009) Harmine Specifically Inhibits Protein Kinase DYRK1A and Interferes with Neurite Formation. The FEBS Journal, 276, 6324-6337. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ruben, K., Wurzlbauer, A., Walte, A., et al. (2015) Selectivity Profiling and Biological Activity of Novel beta-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors. PLoS ONE, 10, e0132453. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Drung, B., Scholz, C., Barbosa, V.A., et al. (2014) Computational & Experimental Evaluation of the Structure/Activity Relationship of Beta-Carbolines as DYRK1A Inhibitors. Bioorganic Me-dicinal Chemistry Letters, 24, 4854-4860. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kumar, K., Wang, P., Sanchez, R., et al. (2018) Development of Ki-nase-Selective, Harmine-Based DYRK1A Inhibitors that Induce Pancreatic Human beta-Cell Proliferation. Journal of Medi-cinal Chemistry, 61, 7687-7699. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kunal Kumar, P.W., Wilson, J., Zlatanic, V., Berrouet, C., Khamrui, S., Secor, C., Swartz, E.A., Lazarus, M., Sanchez, R., Stewart, A.F., Garcia-Ocana, A. and DeVita, R.J. (2020) Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β‑Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. Journal of Medicinal Chemistry, 63, 2986-3003. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Gompel, M., Leost, M., De Kier Joffe, E.B., et al. (2004) Meridia-nins, a New Family of Protein Kinase Inhibitors Isolated from the Ascidian Aplidium meridianum. Bioorganic Medicinal Chemistry Letters, 14, 1703-1707. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Llorach-Pares, L., Nonell-Canals, A., Sanchez-Martinez, M., et al. (2017) Computer-Aided Drug Design Applied to Marine Drug Discovery: Meridianins as Alzheimer’s Disease Therapeutic Agents. Marine Drugs, 15, 366. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Radwan, M.A. and El-Sherbiny, M. (2007) Synthesis and Antitumor Activity of Indolylpyrimidines: Marine Natural Product Meridianin D Analogues. Bioorganic Medicinal Chemistry, 15, 1206-1211. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Giraud, F., Alves, G., Debiton, E., et al. (2011) Synthesis, Protein Kinase Inhibitory Potencies, and in Vitro Antiproliferative Activities of Meridianin Derivatives. Journal of Medicinal Chemistry, 54, 4474-4489. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yadav, R.R., Sharma, S., Joshi, P., et al. (2015) Meridianin Derivatives as Potent Dyrk1A Inhibitors and Neuroprotective Agents. Bioorganic Medicinal Chemistry Letters, 25, 2948-2952. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Esvan, Y.J., Zeinyeh, W., Boibessot, T., et al. (2016) Discovery of Py-rido[3,4-g]quinazoline Derivatives as CMGC Family Protein Kinase Inhibitors: Design, Synthesis, Inhibitory Potency and X-Ray Co-Crystal Structure. European Journal of Medicinal Chemistry, 118, 170-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zeinyeh, W., Esvan, Y.J., Nauton, L., et al. (2016) Synthesis and Preliminary in Vitro Kinase Inhibition Evaluation of New Diversely Substituted Pyrido[3,4-g]quinazoline Derivatives. Bio-organic & Medicinal Chemistry Letters, 26, 4327-4329. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Tazarki, H., Zeinyeh, W., Esvan, Y.J., et al. (2019) New Pyrido[3,4-g]quinazoline Derivatives as CLK1 and DYRK1A Inhibitors: Syn-thesis, Biological Evaluation and Binding Mode Analysis. European Journal of Medicinal Chemistry, 166, 304-317. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Debdab, M., Carreaux, F., Renault, S., et al. (2011) Leucettines, a Class of Potent Inhibitors of CDC2-Like Kinases and Dual Specificity, Tyrosine Phosphorylation Regulated Kinases Derived from the Marine Sponge Leucettamine B: Modulation of Alternative Pre-RNA Splicing. Journal of Medicinal Chemistry, 54, 4172-4186. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Souchet, B., Audrain, M., Billard, J.M., et al. (2019) Inhibition of DYRK1A Proteolysis Modifies Its Kinase Specificity and Rescues Alzheimer Phenotype in APP/PS1 Mice. Acta Neuropathologica Communications, 7, 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Nguyen, T.L., Duchon, A., Manousopoulou, A., et al. (2018) Correc-tion of Cognitive Deficits in Mouse Models of Down Syndrome by a Pharmacological Inhibitor of DYRK1A. Disease Models & Mechanisms, 11, Article ID: 035634. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Beniddir, M.A., Le Borgne, E., Iorga, B.I., et al. (2014) Acridone Alkaloids from Glycosmis Chlorosperma as DYRK1A Inhibitors. Journal of Natural Products, 77, 1117-1122. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Ogawa, Y., Nonaka, Y., Goto, T., et al. (2010) Development of a Novel Selec-tive Inhibitor of the Down Syndrome-Related Kinase Dyrk1A. Nature Communication, 1, Article No. 86. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Masaki, S., Kii, I., Sumida, Y., et al. (2015) Design and Synthesis of a Potent Inhibitor of Class 1 DYRK Kinases as a Suppressor of Adipogenesis. Bioorganic Medicinal Chemistry, 23, 4434-4441. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Kii, I., Sumida, Y., Goto, T., et al. (2016) Selective Inhibition of the Kinase DYRK1A by Targeting Its Folding Process. Nature Communications, 7, Article No. 11391. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Sonamoto, R., Kii, I., Koike, Y., et al. (2015) Identification of a DYRK1A Inhibitor That Induces Degradation of the Target Kinase Using Co-Chaperone CDC37 Fused with Luciferase nanoKAZ. Scientific Reports, 5, Article No. 12728. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Salah, M., Abdel-Halim, M. and Engel, M. (2018) Design and Synthesis of Conformationally Constraint Dyrk1A Inhibitors by Creating an Intramolecular H-Bond Involving a Benzothiazole Core. Medchemcomm, 9, 1045-1053. [Google Scholar] [CrossRef]
|
|
[59]
|
Falke, H., Chaikuad, A., Becker, A., et al. (2015) 10-Iodo-11H-indolo[3,2-c] Quinoline-6-Carboxylic Acids Are Selective Inhibitors of DYRK1A. Journal of Medicinal Chemistry, 58, 3131-3143. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Rosanna Meine, W.B., Falke, H., Preu, L., Loaëc, N., Meijer, L. and Kunick, C. (2018) Indole-3 Carbonitriles as DYRK1A Inhibitors by Fragment-Based Drug Design. Molecules, 23, 64. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Lechner, C., Flasshoff, M., Falke, H., et al. (2019) [b]-Annulated Halogen-Substituted Indoles as Potential DYRK1A Inhibitors. Molecules, 24, 4090. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Rosse, G. (2013) Tricyclic Pyrimidines as Inhibitors of DYRK1A/DYRK1B as Potential Treatment for Down’s Syndrome or Alzheimer’s Disease. Medicinal Chemistry Letters, 4, 502-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Coutadeur, S., Benyamine, H., Delalonde, L., et al. (2015) A Novel DYRK1A (Dual Specificity Tyrosine Phosphorylation-Regulated Kinase 1A) Inhibitor for the Treatment of Alzheimer’s Disease: Effect on Tau and Amyloid Pathologies in Vitro. Journal of Neurochemistry, 133, 440-451. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Chaikuad, A., Diharce, J., Schroder, M., et al. (2016) An Unusual Binding Model of the Methyl 9-Anilinothiazolo [5,4-f]quinazoline-2-carbimidates (EHT 1610 and EHT 5372) Confers High Selectivity for Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases. Journal of Medicinal Chemistry, 59, 10315-10321. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Fruit, C., Couly, F., Bhansali, R., et al. (2019) Biological Charac-terization of 8-Cyclopropyl-2-(pyridin-3-yl)thiazo- lo[5,4-f]quinazolin-9(8H)-one, a Promising Inhibitor of DYRK1A. Pharmaceuticals (Basel), 12, 185. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Nakano-Kobayashi, A., Awaya, T., Kii, I., et al. (2017) Prenatal Neurogenesis Induction Therapy Normalizes Brain Structure and Function in Down Syndrome Mice. Proceedings of the National Academy of Sciences of the United States of America, 114, 10268-10273. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Kumar, K., Man-Un Ung, P., Wang, P., et al. (2018) Novel Selective Thiadiazine DYRK1A Inhibitor Lead Scaffold with Human Pancreatic Beta-Cell Proliferation Activity. European Journal of Medicinal Chemistry, 157, 1005-1016. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Deshmukh, V., Hu, H., Barroga, C., et al. (2018) A Small-Molecule Inhibitor of the Wnt Pathway (SM04690) as a Potential Disease Modifying Agent for the Treatment of Osteoarthritis of the Knee. Osteoarthritis Cartilage, 26, 18-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Deshmukh, V., O’Green, A.L., Bossard, C., et al. (2019) Modulation of the Wnt Pathway through Inhibition of CLK2 and DYRK1A by Lorecivivint as a Novel, Potentially Disease-Modifying Ap-proach for Knee Osteoarthritis Treatment. Osteoarthritis Cartilage, 27, 1347-1360. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Schmitt, C., Kail, D., Mariano, M., et al. (2014) Design and Synthesis of a Library of Lead-Like 2,4-Bisheterocyclic Substituted Thiophenes as Selective Dyrk/Clk Inhibitors. PLoS ONE, 9, e87851. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Sarah, M.A.-H., Darwish, S., Salah, M., Abadi, A.H. and Becker, W. (2018) Matthias Engel Development of Novel 2,4-bispyridyl Thiophene-Based Compounds as Highly Potent and Selective Dyrk1A Inhibitors. Part I: Benzamide and Benzylamide Derivatives. European Journal of Medicinal Chemistry, 157, 1031-1050. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Darwish, S.S., Abdel-Halim, M., ElHady, A.K., et al. (2018) De-velopment of Novel Amide-Derivatized 2,4-bispyridyl Thiophenes as Highly Potent and Selective Dyrk1A Inhibitors. Part II: Identification of the Cyclopropylamide Moiety as a Key Modification. European Journal of Medicinal Chemistry, 158, 270-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Gourdain, S., Dairou, J., Denhez, C., et al. (2013) Development of DANDYs, New 3,5-diaryl-7-azaindoles Demonstrating Potent DYRK1A Kinase Inhibitory Activity. Journal of Medicinal Chemistry, 56, 9569-9585. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Neumann, F., Gourdain, S., Albac, C., et al. (2018) DYRK1A Inhibition and Cognitive Rescue in a Down Syndrome Mouse Model Are Induced by New Fluoro-DANDY Derivatives. Science Reports, 8, Article No. 2859. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Melchior, B., Mittapalli, G. K., Lai, C., et al. (2019) Tau Pathology Reduction with SM07883, a Novel, Potent, and Selective Oral DYRK1A Inhibitor: A Potential Therapeutic for Alzheimer’s Disease. Aging Cell, 18, 1-14. [Google Scholar] [CrossRef] [PubMed]
|