[1]
|
Nisar, N., Li, L., Lu, S., et al. (2015) Carotenoid Metabolism in Plants. Molecular Plant, 8, 68-82.
https://doi.org/10.1016/j.molp.2014.12.007
|
[2]
|
Llorente, B., Martinez-Garcia, J.F., Stange, C., et al. (2017) Il-luminating Colors: Regulation of Carotenoid Biosynthesis and Accumulation by Light. Current Opinion in Plant Bi-ology, 37, 49-55. https://doi.org/10.1016/j.pbi.2017.03.011
|
[3]
|
DellaPenna, D. and Pogson, B.J. (2006) Vitamin Synthesis in Plants: Tocopherols and Carotenoids. Annual Review of Plant Biology, 57, 711-738. https://doi.org/10.1146/annurev.arplant.56.032604.144301
|
[4]
|
Silva, J.S., Chaves, G.V., Stenzel, A.P., et al. (2017) Improvement of Anthropometric and Biochemical, but Not of Vitamin A, Status in Adolescents Who Undergo Roux-en-Y Gastric Bypass: A 1-Year Follow up Study. Surgery for Obesity and Related Diseases, 13, 227-233. https://doi.org/10.1016/j.soard.2016.09.002
|
[5]
|
Sandmann, G. (2015) Carotenoids of Biotechnological Importance. Advances in Biochemical Engineering/Biotechnology, 148, 449-467. https://doi.org/10.1007/10_2014_277
|
[6]
|
Fassett, R.G. and Coombes, J.S. (2012) Astaxanthin in Cardiovascular Health and Disease. Molecules, 17, 2030-2048.
https://doi.org/10.3390/molecules17022030
|
[7]
|
Mordente, A., Guantario, B., Meucci, E., et al. (2011) Lycopene and Cardiovascular Diseases: An Update. Current Medicinal Chemistry, 18, 1146-1163. https://doi.org/10.2174/092986711795029717
|
[8]
|
Sun, T., Yuan, H., Cao, H., et al. (2018) Carotenoid Metabol-ism in Plants: The Role of Plastids. Molecular Plant, 11, 58-74. https://doi.org/10.1016/j.molp.2017.09.010
|
[9]
|
Moise, A.R., Al-Babili, S. and Wurtzel, E.T. (2014) Mechanistic Aspects of Carotenoid Biosynthesis. Chemical Reviews, 114, 164-193. https://doi.org/10.1021/cr400106y
|
[10]
|
Yuan, H., Zhang, J., Nageswaran, D., et al. (2015) Carotenoid Metabolism and Regulation in Horticultural Crops. Horticulture Research, 2, Article No.: 15036. https://doi.org/10.1038/hortres.2015.36
|
[11]
|
Zhang, J., Tao, N., Xu, Q., et al. (2009) Functional Characterization of Citrus PSY Gene in Hongkong Kumquat (Fortunella hindsii Swingle). Plant Cell Reports, 28, 1737-1746. https://doi.org/10.1007/s00299-009-0774-3
|
[12]
|
Fraser, P.D., Enfissi, E.M., Halket, J.M., et al. (2007) Manipula-tion of Phytoene Levels in Tomato Fruit: Effects on Isoprenoids, Plastids, and Intermediary Metabolism. Plant Cell, 19, 3194-3211. https://doi.org/10.1105/tpc.106.049817
|
[13]
|
Maass, D., Arango, J., Wust, F., et al. (2009) Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels. PLoS One, 4, e6373. https://doi.org/10.1371/journal.pone.0006373
|
[14]
|
程珍霞, 胡海涛, 杨莉, 等. 超表达牛奶子EutPDS提高番茄果实番茄红素含量[J]. 林业科学, 2017, 53(1): 62-69.
|
[15]
|
Lu, S., Zhang, Y., Zheng, X., et al. (2016) Molecular Characterization, Critical Amino Acid Identification, and Promoter Analysis of a Lycopene β-Cyclase Gene from Citrus. Tree Genetics and Genomes, 12, 106.
https://doi.org/10.1007/s11295-016-1066-z
|
[16]
|
Zhang, L., Ma, G., Shirai, Y., et al. (2012) Expression and Func-tional Analysis of Two Lycopene Beta-Cyclases from Citrus Fruits. Planta, 236, 1315-1325. https://doi.org/10.1007/s00425-012-1690-2
|
[17]
|
Zeng, J., Wang, C., Chen, X., et al. (2015) The Lycopene Be-ta-Cyclase Plays a Significant Role in Provitamin A Biosynthesis in Wheat Endosperm. BMC Plant Biology, 15, 112. https://doi.org/10.1186/s12870-015-0514-5
|
[18]
|
Diretto, G., Tavazza, R., Welsch, R., et al. (2006) Metabolic En-gineering of Potato Tuber Carotenoids through Tuber-Specific Silencing of Lycopene Epsilon Cyclase. BMC Plant Bi-ology, 6, 13.
https://doi.org/10.1186/1471-2229-6-13
|
[19]
|
Yu, B., Lydiate, D.J., Young, L.W., et al. (2008) Enhancing the Carotenoid Content of Brassica napus Seeds by Downregulating Lycopene Epsilon Cyclase. Transgenic Research, 17, 573-585.
https://doi.org/10.1007/s11248-007-9131-x
|
[20]
|
Ng, M. and Yanofsky, M.F. (2001) Function and Evolution of the Plant MADS-Box Gene Family. Nature Reviews Genetics, 2, 186-195. https://doi.org/10.1038/35056041
|
[21]
|
Martel, C., Vrebalov, J., Tafelmeyer, P., et al. (2011) The Tomato MADS-Box Transcription Factor RIPENING INHIBITOR Interacts with Promoters Involved in Numerous Ripening Processes in a COLORLESS NONRIPENING-Dependent Manner. Plant Physiology, 157, 1568-1579. https://doi.org/10.1104/pp.111.181107
|
[22]
|
Luo, Z., Zhang, J., Li, J., et al. (2013) A STAY-GREEN Protein SlSGR1 Regulates Lycopene and Beta-Carotene Accumulation by Interacting Directly with SlPSY1 during Ripening Processes in Tomato. New Phytologist, 198, 442-452.
https://doi.org/10.1111/nph.12175
|
[23]
|
Hinz, M., Wilson, I.W., Yang, J., et al. (2010) Arabidopsis RAP2.2: An Ethylene Response Transcription Factor That Is Important for Hypoxia Survival. Plant Physiology, 153, 757-772. https://doi.org/10.1104/pp.110.155077
|
[24]
|
Toledo-Ortiz, G., Huq, E. and Rodriguez-Concepcion, M. (2010) Di-rect Regulation of Phytoene Synthase Gene Expression and Carotenoid Biosynthesis by Phytochrome-Interacting Fac-tors. Proceedings of the National Academy of Sciences of the United States of America, 107, 11626-11631. https://doi.org/10.1073/pnas.0914428107
|
[25]
|
Llorente, B., D’Andrea, L., Ruiz-Sola, M.A., et al. (2016) Tomato Fruit Carotenoid Biosynthesis Is Adjusted to Actual Ripening Progression by a Light-Dependent Mechanism. Plant Journal, 85, 107-119. https://doi.org/10.1111/tpj.13094
|
[26]
|
Lu, S., Zhang, Y., Zhu, K., et al. (2018) The Citrus Transcription Factor CsMADS6 Modulates Carotenoid Metabolism by Directly Regulating Carotenogenic Genes. Plant Physiology, 176, 2657-2676. https://doi.org/10.1104/pp.17.01830
|
[27]
|
Liu, L., Shao, Z., Zhang, M., et al. (2015) Regulation of Carotenoid Metabolism in Tomato. Molecular Plant, 8, 28-39.
https://doi.org/10.1016/j.molp.2014.11.006
|
[28]
|
Pizarro, L. and Stange, C. (2009) Light-Dependent Regulation of Carotenoid Biosynthesis in Plants. Ciencia e Investigación Agraria, 36, 143-162. https://doi.org/10.4067/S0718-16202009000200001
|
[29]
|
Ma, G., Zhang, L., Kato, M., et al. (2012) Effect of Blue and Red LED Light Irradiation on Beta-Cryptoxanthin Accumulation in the Flavedo of Citrus Fruits. Journal of Agricultural and Food Chemistry, 60, 197-201.
https://doi.org/10.1021/jf203364m
|
[30]
|
Zhang, L., Ma, G., Yamawaki, K., et al. (2015) Effect of Blue LED Light Intensity on Carotenoid Accumulation in Citrus Juice Sacs. Journal of Plant Physiology, 188, 58-63. https://doi.org/10.1016/j.jplph.2015.09.006
|
[31]
|
Robertson, G.H., Mahoney, N.E., Goodman, N., et al. (1995) Regulation of Lycopene Formation in Cell Suspension Culture of VFNT Tomato (Lycopersicon esculentum) by CPTA, Growth Regulators, Sucrose, and Temperature. Journal of Experimental Botany, 46, 13-23. https://doi.org/10.1093/jxb/46.6.667
|
[32]
|
刘雪静, 王艳, 刘童光, 等. 低温对番茄果实转色关键酶的影响[J]. 中国瓜菜, 2015, 28(1): 19-22.
|
[33]
|
崔彤彤. 温度与SA对龙眼培养细胞类黄酮和类胡萝卜素的影响[D]: [硕士学位论文]. 福州: 福建农林大学, 2017.
|
[34]
|
Yang, L.Y., Yang, S.L., Li, J.Y., et al. (2018) Effects of Different Growth Temperatures on Growth, Development, and Plastid Pigments Metabolism of Tobacco (Nicotiana tabacum L.) Plants. Botanical Studies, 59, Article No.: 5.
https://doi.org/10.1186/s40529-018-0221-2
|
[35]
|
Zhang, Z., Liu, L., Zhang, M., et al. (2014) Effect of Carbon Dioxide Enrichment on Health-Promoting Compounds and Organoleptic Properties of Tomato Fruits Grown in Greenhouse. Food Chemistry, 153, 157-163.
https://doi.org/10.1016/j.foodchem.2013.12.052
|
[36]
|
张朋, 张文会, 苗秀莲, 等. CO2浓度倍增对大豆生长及光合作用的影响[J]. 大豆科学, 2010(1): 64-67.
|
[37]
|
张志明. 二氧化碳施肥对番茄果实品质的影响[D]: [硕士学位论文]. 杭州: 浙江大学, 2012.
|
[38]
|
Dhami, N., Tissue, D.T. and Cazzonelli, C.I. (2018) Leaf-Age Dependent Re-sponse of Carotenoid Accumulation to Elevated CO2 in Arabidopsis. Archives of Biochemistry and Biophysics, 647, 67-75.
https://doi.org/10.1016/j.abb.2018.03.034
|
[39]
|
Levin, I., de Vos, C.H.R., Tadmor, Y., et al. (2006) High Pigment Tomato Mutants—More than Just Lycopene (a Review). Israel Journal of Plant Sciences, 54, 179-190. https://doi.org/10.1560/IJPS_54_3_179
|
[40]
|
Sauret-Gueto, S., Botella-Pavia, P., Flores-Perez, U., et al. (2006) Plastid Cues Posttranscriptionally Regulate the Accumulation of Key Enzymes of the Methylerythritol Phosphate Pathway in Arabidopsis. Plant Physiology, 141, 75-84.
https://doi.org/10.1104/pp.106.079855
|
[41]
|
Schweiggert, R.M. and Carle, R. (2017) Carotenoid Deposition in Plant and Animal Foods and Its Impact on Bioavailability. Critical Reviews in Food Science and Nutrition, 57, 1807-1830.
|
[42]
|
Li, L., Yuan, H., Zeng, Y., et al. (2016) Plastids and Carotenoid Accumulation. Subcellular Bioche-mistry, 79, 273-293.
https://doi.org/10.1007/978-3-319-39126-7_10
|
[43]
|
Chayut, N., Yuan, H., Ohali, S., et al. (2017) Distinct Me-chanisms of the ORANGE Protein in Controlling Carotenoid Flux. Plant Physiology, 173, 376-389. https://doi.org/10.1104/pp.16.01256
|
[44]
|
Yuan, H., Owsiany, K., Sheeja, T.E., et al. (2015) A Single Amino Acid Substitution in an ORANGEp Promotes Carotenoid Overaccumulation in Arabidopsis. Plant Physiology, 169, 421-431. https://doi.org/10.1104/pp.15.00971
|
[45]
|
Lu, S., Van Eck, J., Zhou, X., et al. (2006) The Cauliflower Or Gene Encodes a DnaJ Cysteine-Rich Domain-Containing Protein That Mediates High Levels of Beta-Carotene Accumulation. Plant Cell, 18, 3594-3605.
https://doi.org/10.1105/tpc.106.046417
|
[46]
|
Li, L., Yang, Y., Xu, Q., et al. (2012) The Or Gene Enhances Carote-noid Accumulation and Stability during Post-Harvest Storage of Potato Tubers. Molecular Plant, 5, 339-352. https://doi.org/10.1093/mp/ssr099
|
[47]
|
Gao, H.Y., Zhu, B.Z., Zhu, H.L., et al. (2007) Effect of Suppression of Ethylene Biosynthesis on Flavor Products in Tomato Fruits. Russian Journal of Plant Physiology, 54, 80-88. https://doi.org/10.1134/S1021443707010128
|
[48]
|
Gao, H., Zhu, H., Shao, Y., et al. (2008) Lycopene Accumula-tion Affects the Biosynthesis of Some Carotenoid-Related Volatiles Independent of Ethylene in Tomato. Journal of Integrative Plant Biology, 50, 991-996.
https://doi.org/10.1111/j.1744-7909.2008.00685.x
|
[49]
|
Vrebalov, J., Pan, I.L., Arroyo, A.J., et al. (2009) Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato SHATTERPROOF Gene TAGL1. Plant Cell, 21, 3041-3062. https://doi.org/10.1105/tpc.109.066936
|
[50]
|
Chung, M.Y., Vrebalov, J., Alba, R., et al. (2010) A Tomato (Solanum lycopersicum) APETALA2/ERF Gene, SlAP2a, Is a Negative Regulator of Fruit Ripening. Plant Journal, 64, 936-947.
https://doi.org/10.1111/j.1365-313X.2010.04384.x
|
[51]
|
Sun, L., Yuan, B., Zhang, M., et al. (2012) Fruit-Specific RNAi-Mediated Suppression of SlNCED1 Increases Both Lycopene and Beta-Carotene Contents in Tomato Fruit. Journal of Experimental Botany, 63, 3097-3108.
https://doi.org/10.1093/jxb/ers026
|
[52]
|
邓昌哲, 秦于玲, 李开绵, 等. 外源ABA对木薯叶片β-胡萝卜素合成通路相关基因表达的影响[J]. 热带作物学报, 2017, 38(4): 667-672.
|
[53]
|
凌亚杰, 杨子, 莫琴, 等. 外源蔗糖和ABA对草莓生物活性物质及抗氧化能力的影响[J]. 基因组学与应用生物学, 2019(4): 1712-1718.
|
[54]
|
李家寅. 生长素及生长素–乙烯互作调控番茄果实成熟的效应与机理[D]: [博士学位论文]. 杭州: 浙江大学, 2017.
|
[55]
|
Su, L., Diretto, G., Purgatto, E., et al. (2015) Carotenoid Accumulation during Tomato Fruit Ripening Is Modulated by the Auxin-Ethylene Balance. BMC Plant Biology, 15, 114. https://doi.org/10.1186/s12870-015-0495-4
|
[56]
|
Rosas-Saavedra, C. and Stange, C. (2016) Biosynthesis of Caro-tenoids in Plants: Enzymes and Color. Subcellular Biochemistry, 79, 35-69. https://doi.org/10.1007/978-3-319-39126-7_2
|
[57]
|
Lu, S. and Li, L. (2008) Carotenoid Metabolism: Biosynthesis, Regulation, and Beyond. Journal of Integrative Plant Biology, 50, 778-785. https://doi.org/10.1111/j.1744-7909.2008.00708.x
|
[58]
|
朱运钦, 乔改梅, 王志强. 植物类胡萝卜素代谢调控的研究进展[J]. 分子植物育种, 2016(2): 471-474.
|