[1]
|
陈秋燕, 吴晓, 汤清波, 等. 烟青虫成虫脑结构解剖和三维模型构建[J]. 昆虫学报, 2016, 59(1): 33-46.
|
[2]
|
Wei, H., El Jundi, B., Homberg, U. and Stengl, M. (2010) Implementation of Pigment-Dispersing Factor-Immunoreactive Neurons in a Standardized Atlas of the Brain of the Cockroach Leucophaea maderae. Journal of Comparative Neurology, 518, 4113-4133. https://doi.org/10.1002/cne.22471
|
[3]
|
El Jundi, B., Huetteroth, W., Kurylas, A.E. and Schachtner, J. (2009) Anisometric Brain Dimorphism Revisited: Implementation of a Volumetric 3D Standard Brain in Manduca sexta. Journal of Comparative Neurology, 517, 210-225.
https://doi.org/10.1002/cne.22150
|
[4]
|
Heinze, S. and Reppert, S.M. (2012) Anatomical Basis of Sun Compass Navigation I: The General Layout of the Monarch Butterfly Brain. Journal of Comparative Neurology, 520, 1599-1628. https://doi.org/10.1002/cne.23054
|
[5]
|
Montgomery, S.H. and Ott, S.R. (2015) Brain Composition in Godyris zavaleta, a Diurnal Butterfly, Reflects an Increased Reliance on Olfactory Informations. Journal of Comparative Neurol-ogy, 523, 869-891.
https://doi.org/10.1002/cne.23711
|
[6]
|
Homberg, U. (2008) Evolution of the Central Complex in the Arthropod Brain with Respect to the Visual System. Arthropod Structure & Development, 37, 347-362. https://doi.org/10.1016/j.asd.2008.01.008
|
[7]
|
Pfeiffer, K. and Homberg, U. (2014) Organization and Functional Roles of the Central Complex in the Insect Brain. Annual Review of Entomology, 59, 165-184. https://doi.org/10.1146/annurev-ento-011613-162031
|
[8]
|
Homberg, U., Brandl, C., Clynen, E., et al. (2004) Mas-Allatotropin/Lom-AG-Myotropin I Immunostaining in the Brain of the Locust, Schistocerca gregaria. Cell and Tissue Research, 318, 439-457.
https://doi.org/10.1007/s00441-004-0913-7
|
[9]
|
Fahrbach, S.E. (2006) Structure of the Mushroom Bodies of the Insect Brain. Annual Review of Entomology, 51, 209-232.
https://doi.org/10.1146/annurev.ento.51.110104.150954
|
[10]
|
Strausfeld, N.J., Sinakevitch, I., et al. (2009) Ground Plan of the Insect Mushroom Body: Functional and Evolutionary Implications. The Journal of Comparative Neurology, 513, 265-291. https://doi.org/10.1002/cne.21948
|
[11]
|
Kvello, P., Lfaldli, B.B., Rybak, J., et al. (2009) Digital, Three-Dimensional Average Shape D Atlas of the Heliothis virescens Brain with Integrated Gustatory and Olfactory Neurons. Frontiers in Systems Neuroscience, 3, 14.
https://doi.org/10.3389/neuro.06.014.2009
|
[12]
|
Menzel, R. (2001) Searching for the Memory Trace in a Mini-Brain, the Honeybee. Learning & Memory, 8, 53-62.
https://doi.org/10.1101/lm.38801
|
[13]
|
Heisenberg, M. (2003) Mushroom Body Memoir: From Maps to Models. Nature Reviews Neuroscience, 4, 266-275.
https://doi.org/10.1038/nrn1074
|
[14]
|
Rein, K., ZoCkler, M., Mader, M.T., et al. (2002) The Drosophila Standard Brain. Current Biology, 12, 227-231.
https://doi.org/10.1016/S0960-9822(02)00656-5
|
[15]
|
梁学振, 刘光波, 刘金豹, 等. 基于CT三维重建的激素性股骨头坏死患者股骨头坏死组织分布研究[J]. 中国修复重建外科杂志, 2020, 34(1): 57-62.
|
[16]
|
Klaus, A.V., Kulasekera, V.L. and Schawaroch, V. (2003) Three-Dimensional Visualization of Insect Morphology Using Confocal Laser Scanning Microscopy. Journal of Microscopy, 212, 107-121.
https://doi.org/10.1046/j.1365-2818.2003.01235.x
|
[17]
|
Brandt, R., Rohlfing, T., Rybak, J., et al. (2005) Tree-Dimensional Average-Shape Atlas of the Honeybee Brain and Its Applications. Journal of Comparative Neurology, 492, 1-19. https://doi.org/10.1002/cne.20644
|
[18]
|
Kao, C.F. and Lee, T. (2012) Generation of Standard Wild-Type MARCM Clones for Analysis of Drosophila Brain Development. Cold Spring Harbor Protocols, 12, 1267-1272. https://doi.org/10.1101/pdb.prot071662
|
[19]
|
Dreyer, D., Vitt, H., Dippel, S., et al. (2010) 3D Standard Brain of the Red Flour Beetle Tribolium castaneum: A Tool to Study Metamorphic Development and Adult Plasticity. Frontiers in Systems Neuroscience, 4, 3.
https://doi.org/10.3389/neuro.06.003.2010
|
[20]
|
汤清波, 詹欢, Berg BG, 等. 棉铃虫幼虫脑和咽下神经节的三维结构构建[J]. 昆虫学报, 2014, 57(5): 538-546.
|
[21]
|
Adden, A., Wibrand, S., Pfeiffer, K., et al. (2020) The Brain of a Nocturnal Migratory Insect, the Australian Bogong Moth. Journal of Comparative Neurology, 528, 1942-1963. https://doi.org/10.1101/810895
|
[22]
|
郑太雄, 黄帅, 李永福, 等. 基于视觉的三维重建关键技术研究综述[J]. 自动化学报, 2020, 46(4): 631-652.
|
[23]
|
葛斯琴, 任静, 高彩霞. 鞘翅目形态结构的三维重建与功能之间关系探讨的有效方法评估[J]. 应用昆虫学报, 2013, 50(6): 1737-1744.
|
[24]
|
林骋, 曹利平. 三维重建技术指导肝门部胆管癌手术的应用体会[J]. 中华普通外科学文献(电子版), 2018, 12(4): 220-222.
|
[25]
|
杨军. 分析先天性脊柱侧凸诊疗中CT三维重建的价值[J]. 甘肃科技, 2018, 34(21): 157-158.
|
[26]
|
林晓斌, 王建兴, 林晨. 基于MRF的多图像数据三维重构方法研究[J]. 北京印刷学院学报, 2018, 26(3): 46-48.
|
[27]
|
Jenett, A., Schindelin, J.E. and Heisen-berg, M. (2006) The Virtual Insect Brain Protocol: Creating and Comparing Standardized Neuroanatomy. BMC Bioin-formatics, 7, Article No. 544. https://doi.org/10.1186/1471-2105-7-544
|
[28]
|
Rohlfing, T., Brandt, R., Maurer, C.R., et al. (2001) Bee Brains, B-Splines and Computational Democracy: Generating an Average Shape Atlas. Proceedings of IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, Kauai, 187-194.
|
[29]
|
Kurylas, A.E., Rohlfing, T., Krofczik, S., et al. (2008) Standardized Atlas of the Brain of the Desert Locust, Schistocerca gregaria. Cell and Tis-sue Research, 333, 125-145. https://doi.org/10.1007/s00441-008-0620-x
|
[30]
|
Klagges, B.R., Heimbeck, G., Godenschwege, T.A., et al. (1996) Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila. Journal of Neuroscience, 16, 3154-3165.
https://doi.org/10.1523/JNEUROSCI.16-10-03154.1996
|
[31]
|
闫喜中, 谢佼昕, 邓彩萍, 等. 小菜蛾成虫触角叶细胞体的数量、分布和形态[J]. 昆虫学报, 2017, 60(7): 735-741.
|
[32]
|
连国云, 李德智, 陈义昆, 等. 东亚飞蝗脑的形态学观察及三维重建[J]. 应用昆虫学报, 2013, 50(2): 513-517.
|
[33]
|
Rybak, J., Kuss, A., Lamecker, H.Z., et al. (2010) The Digital Bee Brain: Integrating and Managing Neurons in a Common 3D Reference System. Frontiers in Sys-tems Neuroscience, 4, 30. https://doi.org/10.3389/fnsys.2010.00030
|
[34]
|
Ai, H. (2010) Vibration-Processing In-terneurons in the Honeybee Brain. Frontiers in Systems Neuroscience, 3, 19.
https://doi.org/10.3389/neuro.06.019.2009
|
[35]
|
Kvello, P., Jrgensen, K. and Mustaparta, H. (2010) Central Gusta-tory Neurons Integrate Taste Quality Information from Four Appendages in the Moth Heliothis virescens. Journal of Neurophysiology, 103, 2965-2981.
https://doi.org/10.1152/jn.00985.2009
|
[36]
|
Lofaldli, B.B., Kvello, P., Kirkerud, N., et al. (2012) Activity in Neu-rons of Aputative Protocerebral Circuit Representing Information about a 10 Component Plant Odor Blend in Heliothis virescens. Frontiers in Systems Neuroscience, 6, 64.
https://doi.org/10.3389/fnsys.2012.00064
|
[37]
|
El Jundi, B., Heinze, S., Lenschow, C., et al. (2010) The Locust Standard Brain: A 3D Standard of the Central Complex as a Platform for Neural Network Analysis. Frontiers in Systems Neuroscience, 3, 21.
https://doi.org/10.3389/neuro.06.021.2009
|
[38]
|
Chiang, A.S., Lin, C.Y., Chuang, C.C., et al. (2011) Three-Dimensional Reconstruction of Brain-Wide Wiring Networks in Drosophila at Single-Cell Resolution. Current Bi-ology, 21, 1-11.
|
[39]
|
Barton, R.A., Purvis, A. and Harvey, P.H. (1995) Evolutionary Radiation of Visual and Olfactory Brain Systems in Primates, Bats and Insectivores. Philosophical Transactions of the Royal Society of London. Series B, 348, 381-392.
https://doi.org/10.1098/rstb.1995.0076
|
[40]
|
Schoenemann, P.T. (2006) Evolution of the Size and Functional Areas of the Human Brain. Annual Review of Anthropology, 35, 379-406. https://doi.org/10.1146/annurev.anthro.35.081705.123210
|
[41]
|
Montgomery, S.H., Merrill, R.M. and Ott, S.R. (2016) Brain Composition in Heliconius Butterflies, Posteclosion Growth and Experience-Dependent Neuropil Plasticity. The Journal of Comparative Neurology, 524, 1747-1769.
https://doi.org/10.1002/cne.23993
|
[42]
|
Ott, S.R. and Rogers, S.M. (2010) Gregarious Desert Locusts Have Sub-stantially Larger Brains with Altered Proportions Compared with the Solitarious Phase. Proceedings of the Royal Society B, 277, 3087-3096.
https://doi.org/10.1098/rspb.2010.0694
|
[43]
|
Mysore, K., Subramanian, K.A., Sarasij, R.C., et al. (2009) Caste and Sex Specific Olfactory Glomerular Organization and Brain Architecture in Two Sympatric Ant Species Camponotus se-riceus and Camponotus compressus (Fabricius, 1798). Arthropod Structure & Development, 38, 485-497. https://doi.org/10.1016/j.asd.2009.06.001
|
[44]
|
O’Donnell, S., Clifford, M.R., Deleon, S., et al. (2013) Brain Size and Visual Environment Predict Species Differences in Paper Wasp Sensory Processing Brain Regions (Hymenoptera: Vespidae, Polisinae). Brain, Behavior and Evolution, 82, 177-184. https://doi.org/10.1159/000354968
|
[45]
|
Jefferis, G.S.X.E., Potter, C.J., Chan, A.M., et al. (2007) Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatial-ly Segregated Fruit and Pheromone Representation. Cell, 128, 1187-1203.
https://doi.org/10.1016/j.cell.2007.01.040
|
[46]
|
Zhao, X.C., Kvello, P., Lfaldli, B.B., et al. (2014) Representation of Pheromones, Interspecific Signals, and Plant Odors in Higher Olfactory Centers; Mapping Physiologically Identified Antennal-Lobe Projection Neurons in the Male Heliothine Moth. Frontiers in Systems Neuroscience, 8, 186. https://doi.org/10.3389/fnsys.2014.00186
|
[47]
|
Zhao, X.C. and Berg, B.G. (2010) Arrangement of Output Infor-mation from the 3 Macroglomerular Units in the Heliothine Moth Helicoverpa assulta: Morphological and Physiological Features of Male-Specific Projection Neurons. Chemical Senses, 35, 511-521. https://doi.org/10.1093/chemse/bjq043
|
[48]
|
Groh, C., Tautz, J. and Rossler, W. (2004) Synaptic Organization in the Adult Honey Bee Brain Is Influenced by Brood-Temperature Control during Pupal Development. Proceedings of the Na-tional Academy of Sciences of the United States of America, 101, 4268-4273. https://doi.org/10.1073/pnas.0400773101
|
[49]
|
Technau, G.M. (2007) Fiber Number in the Mushroom Bodies of Adult Drosophila Melanogaster Depends on Age, Sex and Experience. Journal of Neurogenetics, 21, 183-196. https://doi.org/10.1080/01677060701695359
|
[50]
|
Molina, Y. and O’Donnell, S. (2008) Age, Sex, and Domi-nance-Related Mushroom Body Plasticity in the Paperwasp Mischocyttarus mastigophorus. Developmental Neurobiolo-gy, 68, 950-959. https://doi.org/10.1002/dneu.20633
|
[51]
|
Bucher, D., Scholz, M., Stetter, M., et al. (2000) Correc-tion Methods for Three Dimensional Reconstructions from Confocal Images: I. Tissue Shrinking and Axial Scaling. Journal of Neuroscience Methods, 100, 135-143.
https://doi.org/10.1016/S0165-0270(00)00245-4
|
[52]
|
Ott, S.R. (2008) Confocal Microscopy in Large Insect Brains: Zinc-Formaldehyde Fixation Improves Synapsin Immunostaining and Preservation of Morphology in Whole-Mounts. Journal of Neuroscience Methods, 172, 220-230.
https://doi.org/10.1016/j.jneumeth.2008.04.031
|
[53]
|
陈秋燕, 常亚军, 郭倩倩, 苏冉冉, 王博, 贺静, 谢桂英, 赵新成. 应用3D打印技术辅助识别昆虫脑解剖结构[J]. 昆虫学报, 2018, 61(4): 439-448.
|