| [1] | 余诚玮, 邓施璐, 温志刚, 等. 米糠及其脂肪酶的研究进展[J]. 食品质量安全检测学报, 2019, 10(2): 297-305. | 
                     
                                
                                    
                                        | [2] | 李远锋, 张锟, 韩双艳, 等. 黑曲霉表面展示南极假丝酵母脂肪酶B催化仲醇动力学拆分[J]. 化学与生物工程, 2018, 35(5): 53-58. | 
                     
                                
                                    
                                        | [3] | 宋华, 冯化林, 孙兴龙. 介孔材料合成研究进展[J]. 工业催化, 2010, 18(9): 1-6. | 
                     
                                
                                    
                                        | [4] | Davis, M.E. (2002) Ordered Porous Materials for Emerging Applications. Nature, 417, 813-821. https://doi.org/10.1038/nature00785
 | 
                     
                                
                                    
                                        | [5] | 刘书来. 脂肪酶催化的研究进展[J]. 化工科技市场, 2003, 26(4): 16-20. | 
                     
                                
                                    
                                        | [6] | 何慧艳. 脂肪酶的固定化及固定化酶的应用[J]. 中国高新技术企业, 2011(36): 78-79. | 
                     
                                
                                    
                                        | [7] | 陈晟, 陈坚, 吴敬. 微生物脂肪酶的结构与功能研究进展[J]. 工业微生物, 2009, 39(5): 53-58. | 
                     
                                
                                    
                                        | [8] | 孙宏丹, 孟秀春, 贾莉, 等. 微生物脂肪酶及其相关研究进展[J]. 大连医学院学报, 2001, 23(4): 292-295. | 
                     
                                
                                    
                                        | [9] | 胡兴翠, 刘建华. 微生物脂肪酶特性及工业应用[J]. 基因组学与应用生物学, 2019, 38(8): 3572-3579. | 
                     
                                
                                    
                                        | [10] | 徐文婷, 毕武丹, 丛方地, 等. 固定化脂肪酶ANL非水催化合成L-抗坏血酸棕榈酸酯[J]. 生物加工过程, 2018, 16(4): 36-39. | 
                     
                                
                                    
                                        | [11] | 严子君, 张鑫, 吴祚骜, 等. 脂肪酶Novozym 435催化合成单月桂酸甘油酯[J]. 大学化学, 2020, 35(4): 119-124. | 
                     
                                
                                    
                                        | [12] | 郑建永, 黄丽娟, 蓝星, 等. 有机相脂肪酶催化合成山梨酸乙酯的研究[J]. 浙江工业大学学报, 2018, 46(3): 288-291. | 
                     
                                
                                    
                                        | [13] | 李雪玉, 周海燕, 周华, 等. 大孔树脂修饰固定化脂肪酶催化合成L-薄荷醇酯[J]. 高校化学工程学报, 2018. 32(5): 1134-1139. | 
                     
                                
                                    
                                        | [14] | 汪玲. 微生物脂肪酶的性质及应用[J]. 生物化工, 2020, 6(3): 161-163. | 
                     
                                
                                    
                                        | [15] | 彭立凤, 赵汝淇. 脂肪酶在催化合成光学活性药物中的应用[J]. 国外医药抗生素分册, 1999, 20(4): 160-166. | 
                     
                                
                                    
                                        | [16] | 刘文强, 李莉. 手性药物及其中间体拆分方法的研究进展[J]. 药学学报, 2018, 53(1): 37-46. | 
                     
                                
                                    
                                        | [17] | Zhao, X.B., Qi, F., Yuan, C.L., et al. (2015) Lipase-Catalyzed Process for Biodiesel Production: Enzyme Immobilization, Process Simu-lation and Optimization. Renewable and Sustainable Energy Reviews, 44, 182-197. https://doi.org/10.1016/j.rser.2014.12.021
 | 
                     
                                
                                    
                                        | [18] | Sankaran, R., Show, P.L. and Chang, J.S. (2016) Biodiesel Produc-tion Using Immobilized Lipase: Feasibility and Challenges. Biofuels, Bioproducts and Biorefining, 10, 896-916. https://doi.org/10.1002/bbb.1719
 | 
                     
                                
                                    
                                        | [19] | Gao, X., Ding, Y., Sheng, Y.D., et al. (2019) Enzyme Immobilization in MOF-Derived Porous NiO with Hierarchical Structure: An Efficient and Stable Enzymatic Reactor. ChemCatChem, 11, 2828-2836. https://doi.org/10.1002/cctc.201900611
 | 
                     
                                
                                    
                                        | [20] | Le, T.T., Murugesan, K., Lee, C.S., et al. (2016) Degradation of Syn-thetic Pollutants in Real Wastewater Using Laccase Encapsulated in Core-Shell Magnetic Copper Alginate Beads. Biore-source Technology, 216, 203-210. https://doi.org/10.1016/j.biortech.2016.05.077
 | 
                     
                                
                                    
                                        | [21] | Nadar, S.S. and Rathod, V.K. (2017) Facile Synthesis of Glu-coamylase Embedded Metal-Organic Frameworks (Glucoamylase-MOF) with Enhanced Stability. International Journal of Biological Macromolecules, 95, 511-519. | 
                     
                                
                                    
                                        | [22] | Zdarta, J., Pinelo, M., Jesionowski, T., et al. (2018) Upgrading of Biomass Monosaccharides by Immobilized Glucose Dehydrogenase and Xylose Dehydrogenase. ChemCatChem, 10, 5164-5173. https://doi.org/10.1002/cctc.201801335
 | 
                     
                                
                                    
                                        | [23] | Pang, S., Wu, Y.W., Zhang, X.Q., et al. (2016) Immobi-lization of Laccase via Adsorption onto Bimodal Mesoporous Zr-MOF. Process Biochemistry, 51, 229-239. https://doi.org/10.1016/j.procbio.2015.11.033
 | 
                     
                                
                                    
                                        | [24] | Gao, J., Wang, Y., Du, Y.J., et al. (2017) Construction of Bio-catalytic Colloidosome Using Lipase-Containing Dendritic Mesoporous Silica Nanospheres for Enhanced Enzyme Catal-ysis. Chemical Engineering Journal, 317, 175-186. https://doi.org/10.1016/j.cej.2017.02.012
 | 
                     
                                
                                    
                                        | [25] | Yassin, M.A., Gad, A.A.M., Ghanem, A.F., et al. (2019) Green Synthesis of Cellulose Nanofibers Using Immobilized Cellulase. Carbohydrate Polymers, 205, 255-260. https://doi.org/10.1016/j.carbpol.2018.10.040
 | 
                     
                                
                                    
                                        | [26] | Hermanova, S., Zarevucka, M., Bousa, D., et al. (2015) Gra-phene Oxide Immobilized Enzymes Show High Thermal and Solvent Stability. Nanoscale, 7, 5852-5858. https://doi.org/10.1039/C5NR00438A
 | 
                     
                                
                                    
                                        | [27] | Xia, G.H., Cao, S.L., Xu, P., et al. (2017) Preparation of a Nanobiocat-alyst by Efficiently Immobilizing Aspergillus niger Lipase onto Magnetic Metal-Biomolecule Frameworks (BioMOF). ChemCatChem, 9, 1794-1800. https://doi.org/10.1002/cctc.201700070
 | 
                     
                                
                                    
                                        | [28] | Hartmann, M. and Kostrov, X. (2013) Immobilization of Enzymes on Porous Silicas—Benefits and Challenges. Chemical Society Reviews, 42, 6277-6289. https://doi.org/10.1039/c3cs60021a
 | 
                     
                                
                                    
                                        | [29] | 王艳君. 介孔分子筛MCM-41的合成及其孔道中脂肪酶的固定化研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2006. | 
                     
                                
                                    
                                        | [30] | 鲁奇林, 李雨擎. MCM-41分子筛的水热合成、改性及其应用研究进展[J]. 现代化工, 2019, 39(4): 40-44. | 
                     
                                
                                    
                                        | [31] | 王海鑫, 陈赓, 高龙, 等. 介孔分子筛SBA-15的研究进展[J]. 广东化工, 2018(1): 100, 110. | 
                     
                                
                                    
                                        | [32] | 张晓凤, 喻晓蔚, 徐岩. 定点突变提高土曲霉Aspergillus terreus脂肪酶的催化活性[J]. 生物工程学报, 2018, 34(7): 1091-1105. | 
                     
                                
                                    
                                        | [33] | 秦靖杉, 刘宇, 姜男哲. SBA-16的形貌可控合成研究[J]. 新型化工材料, 2017, 45(3): 163-165. | 
                     
                                
                                    
                                        | [34] | El-Nahass, M.N., El-Keiy, M.M. and Ali, E.M.M. (2018) Immobilization of Horseradish Peroxidase into Cubic Mesoporous Silicate, SBA-16 with High Activity and Enhanced Stability. Interna-tional Journal of Biological Macromolecules, 116, 1304-1309. | 
                     
                                
                                    
                                        | [35] | 钱昆, 宋晓伟, 徐达, 等. 以季磷化合物为模板剂合成超大孔分子筛ITQ-33[J]. 高等学校化学学报, 2012, 33(10): 2141-2145. | 
                     
                                
                                    
                                        | [36] | Qian, K., Wang, Y.L., Liang, Z.Q., et al. (2015) Germanosilicate Zeolite ITQ-44 with Extra-Large 18-Rings Synthesized Using a Commercial Quater-nary Ammonium as a Structure-Directing Agent. RSC Advances, 5, 63209-63214. https://doi.org/10.1039/C5RA09942K
 | 
                     
                                
                                    
                                        | [37] | DiCosimo, R., McAuliffe, J., Poulose, A.J., et al. (2013) Industrial Use of Immobilized Enzymes Chemical Society Reviews, 42, 6437-6474. https://doi.org/10.1039/c3cs35506c
 |