对胰蛋白酶敏感性不同的口腔黏膜角化细胞活性的探讨
Study on the Activity of Keratinocytes in Oral Mucosa with Different Sensitivity to Trypsin
DOI: 10.12677/ACM.2021.114270, PDF, HTML, XML,   
作者: 赵厚明, 刘 峰*:山东大学齐鲁医学院口腔医学院·口腔医院,口腔急诊科,山东省口腔组织再生重点实验室,山东省口腔生物材料与组织再生工程实验室,山东 济南
关键词: 胰蛋白酶口腔黏膜角化细胞增殖能力Trypsin Keratinocytes of Oral Mucosa Proliferation
摘要: 目的:探讨对胰蛋白酶敏感性不同的口腔黏膜角化细胞在体外培养过程中活性的不同,筛选最具增殖能力的口腔黏膜角化细胞。方法:体外培养口腔黏膜角化细胞,传代过程中使用0.25%胰蛋白酶消化细胞,针对作用时间在4 min、5 min、6 min后脱离培养皿的细胞进行收集后分为A组、B组、C组,分别进行传代培养,通过显微镜观察细胞形态并计算细胞集落数;用CCK8法检测细胞的增殖能力。结果:B组最快到达生长对数期,细胞增殖能力最强,且细胞集落形成率最高,与其他组比较P < 0.05,差异具有统计学意义。结论:在口腔黏膜角化细胞传代过程中,0.25%胰蛋白酶消化时间5 min后进行接种培养可获得活性较强的角化细胞。
Abstract: Objective: To investigate the different activities of oral mucosa keratinocytes with different sensitivity to trypsin in vitro culture, and to screen the oral mucosa keratinocytes with the most proliferative ability. Methods: Oral mucosa keratinocytes were cultured in vitro. During the passage, 0.25% trypsin was used to digest the cells. The cells separated from the culture plate after 4 min, 5 min and 6 min were collected and divided into groups A, B and C. The proliferation ability of cells was measured by CCK8 method. Results: Group B reached the logarithmic stage of growth the fastest, the cell proliferation ability was the strongest, and the cell colony formation rate was the highest, compared with other groups, P < 0.05, the difference was statistically significant. Conclusion: During the passage of oral mucosa keratinocytes, the active keratinocytes could be obtained by inoculation and culture after 0.25% trypsin digestion for 5 min.
文章引用:赵厚明, 刘峰. 对胰蛋白酶敏感性不同的口腔黏膜角化细胞活性的探讨[J]. 临床医学进展, 2021, 11(4): 1877-1882. https://doi.org/10.12677/ACM.2021.114270

1. 引言

临床上,口腔肿瘤切除、腭裂术后、牙龈切除及烧灼伤等因素易造成大面积口腔黏膜缺损,如何成功修复此类缺损显得尤为重要,在组织工程领域,种子细胞的获取显得尤为重要,获得高增殖高活性的种子细胞是整个组织工程的重中之重 [1],口腔黏膜角化细胞(Oral Keratinocytes)体外保持增殖能力有限,同时基于其具有“Haiflick极限”,细胞增殖能力随着传代次数的增多而降低 [2],研究表明,不断优化口腔粘膜角化细胞的培养体系 [3] [4] 可使口腔黏膜角化细胞传代次数增多,随着干细胞研究的发展 [5],在诱导因子作用下 [6],胚胎干细胞诱导成体细胞 [7] 成为了获取体细胞的新思路 [8],基于胚胎干细胞的多能性 [9],通过胚胎干细胞获得口腔黏膜细胞也有了一定进展 [10] [11]。虽然近几年国内对口腔黏膜角化细胞相关研究较多 [12],但如何获得强增殖能力的口腔黏膜角化细胞却鲜有报道 [13],如何筛选出增殖能力较强的口腔黏膜角化细胞还没有相关研究。本实验目的是通过胰蛋白酶的不同消化时间来筛选出增殖能力较强的角化细胞,从而为口腔黏膜角化细胞的相关研究提供最具增殖能力的“种子细胞”。

2. 材料和方法

2.1. 材料

1) 细胞来源:智齿拔除伴牙龈修整获得的口腔角化黏膜上皮组织,经胰蛋白酶处理获得原代细胞。

2) 主要试剂和仪器:胰蛋白酶(HyClone,美国),角化细胞培养液(KSFM,Gibico,美国),Dispase (Stem Cell,美国),Cell Counting Kit-8 (CCK8),酶标仪(BIO-RAD,美),倒置显微镜(Olympus,日本)。

2.2. 方法

2.2.1. 正常角化细胞原代培养及传代

在患者知情同意的前提下,无菌条件下收集健康人拔智齿时切除的牙龈黏膜,患者年龄 < 30岁。将取下的黏膜组织用加有双抗(青霉素浓度100 U/ml,链霉素浓度为0.1 mg/ml)的PBS溶液反复冲洗7~8次防止污染,然后加入浓度为1 mg/ml的Dispase中性蛋白酶2 ml,4℃条件下处理16~18 h [14]。用镊子将经过中性蛋白酶处理后的组织块的表层上皮及上皮下层分开,并将分离后的上皮层用眼科剪剪成0.5 x 0.5 mm大小的上皮组织,并用混合消化液(0.25%胰蛋白酶:0.02% EDTA = 1:1)于37℃振荡消化6~9 min。加含有胎牛血清的培养基终止消化,用吸管吹打成单细胞悬液。1000 rpm离心5 min并弃上清,用KSFM重悬并加入六孔板,2 ml/孔,将载有以上细胞悬液的培养皿置细胞培养箱中培养1周,获得口腔黏膜角化细胞的原代细胞 [15]。传代时以1:6比例传代,加胰蛋白酶分别消化4 min (A组)、5 min (B组)、6 min (C组)后收集细胞,以1000 rpm离心5 min,加12 ml KSFM培养基重悬并加入六孔板,2 ml/孔。

2.2.2. 倒置显微镜观察细胞

在倒置显微镜下每天观察A、B、C、三组细胞贴壁生长情况,将以上三组细胞传代1周后计数培养皿每孔中的集落数,将50个细胞以上的细胞集落设为一个集落,通过以下公式计算细胞集落形成百分率,集落形成百分率 = 集落数/每皿接种的单细胞个数 × 100%。

2.2.3. 细胞增殖能力检测(Cell Counting Kit-8)

将标记为A、B、C三组的口腔黏膜角化细胞单细胞悬液,加入96孔板,每组设3个复孔,每孔放入细胞数为3 × 103个细胞,在每孔中每24 h加入10 ul CCK8试剂,将细胞培养1 h后再测定三组细胞在450 nm波长的OD值,最后绘制1~6天细胞的生长曲线。

2.2.4. 统计方法

独立样本T检验通过SPSS19.0统计软件进行各组差异计算,P < 0.05为差异有统计学意义。

3. 结果

3.1. 倒置显微镜观察

各组细胞集落形成百分率不同,其中B组细胞集落形成百分率最高,A、C组少量细胞集落形成。细胞集落形成百分率比较:图1所示,B组培养的细胞集落形成最多,图2示B组细胞集落形成率最高,其他组与其比较P < 0.05,具有显著性差异。

Figure 1. The adherent growth of cells in group B is better than that in the other two groups, and the formation of cell colonies was the largest

图1. B组细胞贴壁生长情况优于其他两组,细胞集落形成最多

Figure 2. Analysis of the percentage of cell colony formation in each group, *P < 0.05)

图2. 各组细胞集落形成百分率的分析(*P < 0.05)

3.2. 各组细胞增殖能力

CCK8检测结果如图3所示,B组OD值在细胞接种后第24 h后明显高于其它组,在接种后第4天进入对数生长期,细胞增殖能力比其他组更强。

Figure 3. Cell proliferation ability and growth curve

图3. 细胞增殖能力及生长曲线

4. 讨论

口腔黏膜角化细胞培养的细胞来源多是在健康人拔智齿时取龈黏膜上皮 [16] [17] 或在种植牙手术 [18] [19]、龈切术时获取 [20] 口腔黏膜角化细胞的有组织块培养法 [21] 及消化法两种。组织块培养法由于组织块的原代细胞培养时间较长,且并非每一块组织块都有细胞爬出,所以多数学者选用酶消化法获取黏膜细胞 [22],本实验通过酶消化法顺利获得了口腔黏膜角化细胞,在细胞传代过程中发现,胰蛋白酶处理4 min后就可见部分细胞脱离培养皿,说明此类细胞对胰蛋白酶较为敏感,有些细胞在5 min脱离培养皿,还有些细胞在6 min才脱离培养皿呈现悬浮状态。在角化细胞培养过程中,有些对胰蛋白酶敏感的细胞已经脱离培养皿呈悬浮状态,如果继续在胰蛋白酶作用下浸泡,势必会影响其细胞表面受体的活性,影响其进一步的传代活性及后续的增殖能力。本试验中,为了检测这些细胞的活性,通过计算细胞集落数发现,与胰蛋白酶作用5 min后获得的细胞,其细胞集落形成百分率最高,说明其细胞活性较其他组最强,可在短时间内完成细胞贴壁生长,并快速增殖从而聚集生长(如图1);通过CCK8法检测细胞的增殖能力发现,与胰蛋白酶作用5 min后获得的细胞可迅速达到细胞对数生长期,细胞增殖能力比其他组更强。

胰蛋白酶为肽链内切酶,对精氨酸和赖氨酸肽链具有选择性水解作用,可使天然蛋白、变性蛋白、纤维蛋白和黏蛋白等水解为多肽或氨基酸。Walia [23] 曾根据胰蛋白酶消化乳腺癌细胞时间的不同获得了两中不同的乳腺癌细胞,其中对胰蛋白酶敏感型的细胞成瘤能力是胰蛋白酶抵抗型的80多倍,说明细胞的增殖能力可通过对胰蛋白酶敏感性的高低来判断。

在本实验中,口腔黏膜角化细胞对胰蛋白酶敏感性不同,则其活力或许存在差异,本实验中对不同时期胰蛋白酶消化后获得的细胞进行增殖能力检测,为获得较强活性的口腔黏膜角化细胞提供了新思路。

参考文献

NOTES

*通讯作者。

参考文献

[1] 刘小刚, 李甜, 张舵. 软骨组织工程中种子细胞选择的研究热点[J]. 中国组织工程研究, 2021, 25(31): 5059-5064.
[2] Formanek, M., Millesi, W., Willheim, M., Scheiner, O. and Kornfehl, J. (1996) Optimized Growth Medium for Primary Culture of Human Oral Keratinocytes. International Journal of Oral and Maxillofacial Surgery, 25, 157-160.
https://doi.org/10.1016/S0901-5027(96)80064-6
[3] Moriyama, T., Asahina, I., Ishii, M., Oda, M., Ishii, Y. and Enomoto, S. (2001) Development of Composite Cultured Oral Mucosa Utilizing Collagen Sponge Matrix and Contracted Collagen Gel: A Preliminary Study for Clinical Applications. Tissue Engineering, 7, 415-427.
https://doi.org/10.1089/10763270152436472
[4] 周海文, 周曾同, 商庆新, 曹谊林. 体外培养口腔黏膜角化细胞[J]. 中华口腔医学杂志, 2000, 35(6): 455-457.
[5] Sugaya, K. and Vaidya, M. (2018) Stem Cell Therapies for Neurodegenerative Diseases. In: Mettinger, K., Rameshwar, P. and Kumar, V., Eds., Exosomes, Stem Cells and MicroRNA, Springer, Cham, 61-84.
https://doi.org/10.1007/978-3-319-74470-4_5
[6] Wang, C. Yue, H., Feng, Q., Xu, B., Bian, L. and Shi, P. (2018) Injectable Nanorein-Forced Shape-Memory Hydrogel System for Regenerating Spinal Cord Tissue from Traumatic Injury. ACS Applied Materials & Interfaces, 10, 29299-29307.
https://doi.org/10.1021/acsami.8b08929
[7] Boisvert, E.M., Engle, S.J., Hallowell, S.E., Liu, P., Wang, Z.-W. and Li, X.-J. (2015) Maturation of Nociceptive Neurons from Human Embryonic Stem Cells. Scientific Reports, 19, Article No. 16821.
https://doi.org/10.1038/srep16821
[8] Movahednia, M.M., Kidwai, F.K., Jokhun, D.S., Squier, C.A., Toh, W.S. and Cao, T. (2016) Potential Applications of Keratinocytes Derived from Human Embryonic Stem Cells. Biotechnology Journal, 11, 58-70.
https://doi.org/10.1002/biot.201500099
[9] Li, H., Zhou, H., Xin, F. and Xiao, R. (2016) Directed Differentiation of Human Embryonic Stem Cells into Keratinocyte Progenitors in Vitro: An Attempt with Promise of Clinical Use. In Vitro Cellular & Developmental Biology, 52, 885-893.
https://doi.org/10.1007/s11626-016-0024-2
[10] Lin, Y.T., Wang, C.K., Yang, S.C., Hsu, S.-C., Lin, H., Chang, F.-P., et al. (2017) Elimination of Undifferentiated Human Embryonic Stem Cells by Cardiac Glycosides. Scientific Reports, 7, Article No. 5289.
https://doi.org/10.1038/s41598-017-05616-2
[11] Liu, Y., Zhong, L., Liu, D., Ye, H., Mao, Y. and Hu, Y. (2017) Differential miRNA Expression Profiles in Human Keratinocytes in Response to Protein Kinase C Inhibitor. Molecular Medicine Reports, 16, 6608-6619.
https://doi.org/10.3892/mmr.2017.7447
[12] 赵厚明. 胚胎干细胞诱导分化为角化细胞的研究进展[J]. 临床口腔医学杂志, 2013, 29(6): 381-383.
[13] 赵厚明, 李晗卿, 周海文. 不同细胞外基质对人胚胎干细胞体外定向诱导分化为角化细胞的影响[J]. 临床口腔医学杂志, 2015, 31(3), 148-151.
[14] Shoji, M., Takahito, O., Kayoko, O., Kitagawa, N., Iida, H., Inai, Y., et al. (2020) The Reduced Susceptibility of Mouse Keratinocytes to Retinoic Acid May Be Involved in the Keratinization of Oral and Esophageal Mucosal Epithelium. Histochemistry and Cell Biology, 153, 225-237.
https://doi.org/10.1007/s00418-020-01845-1
[15] Kamaguchi, M., Iwata, H., Miyauchi, T., Ujiie, H., Ujiie, I., Nomura, T., et al. (2019) The Identification of Autoantigens in Mucous Membrane Pemphigoid Using Immortalized Oral Mucosal Keratinocytes. Journal of Oral Pathology & Medicine, 48, 60-67.
https://doi.org/10.1111/jop.12780
[16] Oda, D., Savard, C.E., Eng, L., Sekijima, J., Haigh, G. and Lee, S.P. (1998) Reconstituted Human Oral and Esophageal Mucosa in Culture. In Vitro Cellular & Developmental Biology-Animal, 34, 46-52.
https://doi.org/10.1007/s11626-998-0052-7
[17] Southgate, J., Williams, H.K., Trejdosiewicz, L.K. and Hodges, G.M. (1987) Growth Requirements and Expression of Differentiated Characteristic. Laboratory Investigation, 56, 211-223.
[18] Lauer, G., Otten, J.E., von Specht, B.U. and Schilli, W. (1991) Cultured Gingival Epithelium. A Possible Suitable Material for Pre-Prosthetic Surgery. Journal of Cranio-Maxillofacial Surgery, 19, 21-26.
[19] Muller Glauser, W. and Preisig, E. (1983) The Effect of Cholera Toxin and Epidermal Growth Factor on the in Vitro Growth of Human Oral Epithelial. Archives of Oral Biology, 28, 765-771.
[20] Arenholt Bindslev, D., Jepsen, A., Maccallum, D.K. and Lillie JH (1987) The Growth and Structure of Human Oral Kerationocytes in Culture. Journal of Investigative Dermatology, 88, 314-319.
[21] Chang, S.E., Fosler, S., Beels, D. and Marnock, W.E. (1992) DOK, a Cell Line Established from Human Dysplastic Oral Mucosa, Shows a Partially Transformed Non Malignant Phenotype. International Journal of Cancer, 52, 896-902.
https://doi.org/10.1002/ijc.2910520612
[22] Zhao, H.M., Shao, Y.X. and Zhou, H.W. (2019) A Novel Method to Reconstruct Epithelial Tissue Using High-Purity Keratinocyte Lineage Cells Induced from Human Embryonic Stem Cells. Cell Cycle, 18, 264-273.
https://doi.org/10.1080/15384101.2018.1555118
[23] Walia, V. and Elble, R.C. (2010) Enrichment for Breast Cancer Cells with Stem Progenitor Properties by Differential Adhesion. Stem Cells and Development, 19, 1175-1182.
https://doi.org/10.1089/scd.2009.0430