[1]
|
Chen, X.B., Shen, S.H., Guo, L.J. and Mao, S.S. (2010) Semiconductor-Based Photocatalytic Hydrogen Generation. Chemical Reviews, 110, 6503-6570. https://doi.org/10.1021/cr1001645
|
[2]
|
Tahir, M., Tasleem, S. and Tahir, B. (2020) Recent Development in Band Engineering of Binary Semiconductor Materials for Solar Driven Photocatalytic Hy-drogen Production. International Journal of Hydrogen Energy, 45, 15985-16038.
https://doi.org/10.1016/j.ijhydene.2020.04.071
|
[3]
|
Maeda, K. (2011) Photocatalytic Water Splitting using Semiconductor Particles: History and Recent Developments. Journal of Photochemistry and Photobiology C: Photo-chemistry Reviews, 12, 237-268.
https://doi.org/10.1016/j.jphotochemrev.2011.07.001
|
[4]
|
Wang, Q. and Domen, K. (2020) Particulate Photo-catalysts for Light-driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 120, 919-985. https://doi.org/10.1021/acs.chemrev.9b00201
|
[5]
|
Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. https://doi.org/10.1038/238037a0
|
[6]
|
Kumaravel, V., Mathew, S., Bartlett, J. and Pillai, S.C. (2019) Photo-catalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances. Applied Catalysis B: Envi-ronmental, 244, 1021-1064.
https://doi.org/10.1016/j.apcatb.2018.11.080
|
[7]
|
Sajan, C.P., Wageh, S., Al-Ghamdi, A.A., Yu, J. and Cao, S. (2015) TiO2 Nanosheets with Exposed {001} Facets for Photocatalytic Applications. Nano Research, 9, 3-27. https://doi.org/10.1007/s12274-015-0919-3
|
[8]
|
David, S., Mahadik, M.A., Chung, H.S., Ryu, J.H. and Jang, J.S. (2017) Facile Hydrothermally Synthesized a Novel CdS Nanoflower/Rutile-TiO2 Nanorod Heterojunction Pho-toanode Used for Photoelectrocatalytic Hydrogen Generation. ACS Sustainable Chemistry & Engineering, 5, 7537-7548. https://doi.org/10.1021/acssuschemeng.7b00558
|
[9]
|
Peng, Y.-P., Chen, H. and Huang, C.P. (2017) The Synergistic Effect of Photoelectrochemical (PEC) Reactions Exemplified by Concurrent Perfluorooctanoic Acid (PFOA) Degradation and Hydrogen Generation over Carbon and Nitrogen Codoped TiO2 Nanotube Arrays (C-N-TNTAs) Photoelectrode. Applied Catalysis B: Environmental, 209, 437-446.
https://doi.org/10.1016/j.apcatb.2017.02.084
|
[10]
|
Wang, P., Lu, Y., Wang, X. and Yu, H. (2017) Co-Modification of Amorphous-Ti(IV) Hole Cocatalyst and Ni(OH)2 Electron Cocatalyst for Enhanced Photocatalytic H2-Production Performance of TiO2. Applied Surface Science, 391, 259-266. https://doi.org/10.1016/j.apsusc.2016.06.108
|
[11]
|
Yan, B., Zhou, J., Liang, X., Song, K. and Su, X. (2017) Facile Synthesis of Flake-Like TiO2/C Nano-Composites for Photocatalytic H2 Evolution under Visible-Light Irradiation. Ap-plied Surface Science, 392, 889-896.
https://doi.org/10.1016/j.apsusc.2016.09.117
|
[12]
|
He, Z., Fu, J., Cheng, B., Yu, J. and Cao, S. (2017) Cu2(OH)2CO3 Clusters: Novel Noble-Metal-Free Cocatalysts for Efficient Photocatalytic Hydrogen Production from Water Splitting. Applied Catalysis B: Environmental, 205, 104-111.
https://doi.org/10.1016/j.apcatb.2016.12.031
|
[13]
|
Ran, J., Zhang, J., Yu, J., Jaroniec, M. and Qiao, S.Z. (2014) Earth-Abundant Cocatalysts for Semiconductor-Based Photocatalytic Water Splitting. Chemical Society Reviews, 43, 7787-7812. https://doi.org/10.1039/C3CS60425J
|
[14]
|
N., Z.H., Chen, W.T., Chan, A., Jovic, V., Ina, T., Idriss, H., et al. (2015) The Roles of Metal Co-Catalysts and Reaction Media in Photocatalytic Hydrogen Production: Perfor-mance Evaluation of M/TiO2 Photocatalysts (M = Pd, Pt, Au) in Different Alcohol-Water Mixtures. Journal of Catalysis, 329, 355-367. https://doi.org/10.1016/j.jcat.2015.06.005
|
[15]
|
Sharma, S., Kumar, D. and Khare, N. (2019) Plasmonic Ag Nanoparticles Decorated Bi2S3 Nanorods and Nanoflowers: Their Comparative Assessment for Photoe-lectrochemical Water Splitting. International Journal of Hydrogen Energy, 44, 3538-3552. https://doi.org/10.1016/j.ijhydene.2018.11.238
|
[16]
|
Police, A.K.R., Vattikuti, S.V.P., Mandari, K.K., Chen-naiahgari, M., Phanikrishna Sharma, M.V., Valluri, D.K., et al. (2018) Bismuth Oxide Cocatalyst and Copper Oxide Sensitizer in Cu2O/TiO2/Bi2O3 Ternary Photocatalyst for Efficient Hydrogen Production under Solar Light Irradiation. Ceramics International, 44, 11783-11791.
https://doi.org/10.1016/j.ceramint.2018.03.262
|
[17]
|
Zhou, C., Jiang, C., Wang, R., Chen, J. and Wang, G. (2020) SPR-Effect Enhanced Semimetallic Bi0/p-BiOI/n-CdS Photocatalyst with Spatially Isolated Active Sites and Improved Carrier Transfer Kinetics for H2 Evolution. Industrial & Engineering Chemistry Research, 59, 8183-8194. https://doi.org/10.1021/acs.iecr.0c00483
|
[18]
|
Wei, Z., Liu, J., Fang, W., Guo, W., Zhu, Y., Xu, M., et al. (2019) Photocatalytic Hydrogen Energy Evolution from Antibiotic Wastewater via Metallic bi Nanosphere Doped g-C3N4: Per-formances and Mechanisms. Catalysis Science & Technology, 9, 5279-5291. https://doi.org/10.1039/C9CY01375J
|
[19]
|
Lv, J., Zhang, J., Liu, J., Li, Z., Dai, K. and Liang, C. (2017) Bi SPR-Promoted Z-Scheme Bi2MoO6/CdS-Diethylenetriamine Composite with Effectively Enhanced Visible Light Photocatalytic Hydrogen Evolution Activity and Stability. ACS Sustainable Chemistry & Engineering, 6, 696-706. https://doi.org/10.1021/acssuschemeng.7b03032
|
[20]
|
Gao, D.D., Yu, H.G. and Xu, Y. (2018) Direct Photoin-duced Synthesis and High H2-Evolution Performance of Bi-Modified TiO2 Photocatalyst in a Bi(III)-EG Complex System. Applied Surface Science, 462, 623-632.
https://doi.org/10.1016/j.apsusc.2018.08.061
|
[21]
|
Qin, F., Li, G., Lu, Z., Lu, Z., Sun, H. and Chen, R. (2012) Large-Scale Synthesis of Bismuth Hollow Nanospheres for Highly Efficient Cr(VI) Removal. Dalton Transations, 41 11263-11266. https://doi.org/10.1039/c2dt31021j
|