[1]
|
Zhang, L., Wu, H.B., Madhavi, S., Hng, H.H. and Lou, X.W. (2012) Formation of Fe2O3 Microboxes with Hierarchical Shell Structures from Metal-Organic Frameworks and Their Lithium Storage Properties. Journal of the American Chemical Society, 134, 17388-17391. https://doi.org/10.1021/ja307475c
|
[2]
|
Chen, Y.Z., Wang, C., Wu, Z.Y., Xiong, Y., Xu, Q., Yu, S.-H., et al. (2015) From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis. Advanced Materials, 27, 5010-5016. https://doi.org/10.1002/adma.201502315
|
[3]
|
Torad, N.L., Hu, M., Kamachi, Y., Takai, K., Imura, M., Naito, M., et al. (2013) Facile Synthesis of Nanoporous Carbons with Controlled Particle Sizes by Direct Carbonization of Monodispersed ZIF-8 Crystals. Chemical Communications, 49, 2521-2523. https://doi.org/10.1039/C3CC38955C
|
[4]
|
Li, W., Wu, X., Liu, H., Chen, J., Tang, W. and Chen, Y. (2015) Hierarchical Hollow ZnO Cubes Constructed Using Self-Sacrificial ZIF-8 Frameworks and Their Enhanced Benzene Gas-Sensing Properties. New Journal of Chemistry, 39, 7060-7065. https://doi.org/10.1039/C5NJ00549C
|
[5]
|
Xu, J., Liu, S.C. and Liu, Y. (2016) Co3O4/ZnO Nanoheterostructure Derived from Core-Shell ZIF-8@ZIF-67 for Supercapacitors. RSC Advances, 6, 52137-52142. https://doi.org/10.1039/C6RA07773K
|
[6]
|
Huang, X.C., Lin, Y.Y., Zhang, J.P. and Chen, X.-M. (2006) Ligand-Directed Strategy for Zeolite-Type Metal-Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition, 45, 1557-1559. https://doi.org/10.1002/anie.200503778
|
[7]
|
Hayashi, H., Cote, A.P., Furukawa, H., O’Keeffe, M. and Yaghi, O.M. (2007) Zeolite a Imidazolate Frameworks. Nature Materials, 6, 501-506. https://doi.org/10.1038/nmat1927
|
[8]
|
Lee, Y.R., Do, X.H., Hwang, S.S. and Baek, K.-Y. (2021) Dual-Functionalized ZIF-8 as an Efficient Acid-Base Bifunctional Catalyst for the One-Pot Tandem Reaction. Catalysis Today, 359, 124-132.
https://doi.org/10.1016/j.cattod.2019.06.076
|
[9]
|
Cravillon, J., Münzer, S., Lohmeier, S.J., Feldhoff, A., Huber, K. and Wiebcke, M. (2009) Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chemistry of Materials, 21, 1410-1412. https://doi.org/10.1021/cm900166h
|
[10]
|
Lee, Y.R., Jang, M.S., Cho, H.Y., Kwon, H.-J., Kim, S. and Ahn, W.-S. (2015) ZIF-8: A Comparison of Synthesis Methods. Chemical Engineering Journal, 271, 276-280. https://doi.org/10.1016/j.cej.2015.02.094
|
[11]
|
Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., et al. (2008) High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science, 319, 939-943.
https://doi.org/10.1126/science.1152516
|
[12]
|
Zhong, H.X., Wang, J., Zhang, Y.W., Xu, W.-L., Xing, W., Xu, D., et al. (2014) ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts. Angewandte Chemie International Edition, 53, 14235-14239. https://doi.org/10.1002/anie.201408990
|
[13]
|
Fairen-Jimenez, D., Moggach, S.A., Wharmby, M.T., Wright, P.A., Parsons, S. and Düren, T. (2011) Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations. Journal of the American Chemical Society, 133, 8900-8902. https://doi.org/10.1021/ja202154j
|
[14]
|
Schmidt-Mende, L. and Macmanus-Driscoll, J.L. (2007) ZnO-Nanostructures, Defects, and Devices. MaterialsToday, 10, 40-48. https://doi.org/10.1016/S1369-7021(07)70078-0
|
[15]
|
Dong, R., Tian, B., Zeng, C., Li, T., Wang, T. and Zhang, J. (2012) Ecofriendly Synthesis and Photocatalytic Activity of Uniform Cubic Ag@AgCl Plasmonic Photocatalyst. The Journal of Physical Chemistry C, 117, 213-220.
https://doi.org/10.1021/jp311970k
|
[16]
|
Wu, C.S., Xiong, Z.H., Li, C. and Zhang, J.-M. (2015) Zeolitic Imidazolate Metal Organic Framework ZIF-8 with Ultra-High Adsorption Capacity Bound Tetracycline in Aqueous Solution. RSC Advances, 5, 82127-82137.
https://doi.org/10.1039/C5RA15497A
|
[17]
|
Hu, Y., Kazemian, H., Rohani, S., Huang, Y. and Song, Y. (2011) In Situ High Pressure Study of ZIF-8 by FTIR Spectroscopy. Chemical Communications, 47, 12694-12296. https://doi.org/10.1039/C1CC15525C
|
[18]
|
Du, Y., Chen, R.Z., Yao, J.F. and Wang, H.T. (2013) Facile Fabrication of Porous ZnO by Thermal Treatment of Zeolitic Imidazolate Framework-8 and Its Photocatalytic Activity. Journal of Alloys and Compounds, 551, 125-130.
https://doi.org/10.1016/j.jallcom.2012.10.045
|
[19]
|
Yu, J., Sun, D., Wang, T. and Li, F. (2018) Fabrication of Ag@AgCl/ZnO Submicron Wire Film Catalyst on Glass Substrate with Excellent Visible Light Photocatalytic Activity and Reusability. Chemical Engineering Journal, 334, 225-236. https://doi.org/10.1016/j.cej.2017.10.003
|
[20]
|
Pan, L., Muhammad, T., Ma, L., Huang, Z.-F., Wang, S., Wang, L., Zou, J.-J., et al. (2016) MOF-Derived C-Doped ZnO Prepared via a Two-Step Calcination for Efficient Photocatalysis. Applied Catalysis B: Environmental, 189, 181-191.
https://doi.org/10.1016/j.apcatb.2016.02.066
|
[21]
|
Meng, A., Jing, X., Li, Z., Wei, Q. and Li, Q. (2016) Ag/AgCl/ZnO Nano-Networks: Preparation, Characterization, Mechanism and Photocatalytic Activity. Journal of Molecular Catalysis A: Chemical, 411, 290-298.
https://doi.org/10.1016/j.molcata.2015.10.037
|
[22]
|
Bi, Y. and Ye, J. (2009) In Situ Oxidation Synthesis of Ag/AgCl Core-Shell Nanowires and Their Photocatalytic Properties. Chemical Communications, 43, 6551-6553. https://doi.org/10.1039/B913725D
|
[23]
|
Chen, C., Zhao, W., Li, J., Zhao, J., Hidaka, H. and Serpone, N. (2002) Formation and Identification of Intermediates in the Visible-Light-Assisted Photodegradation of Sulforhodamine-B Dye in Aqueous TiO2 Dispersion. Environmental Science & Technology, 36, 3604-3611. https://doi.org/10.1021/es0205434
|
[24]
|
Tong, Z.W., Yang, D., Sun, Y.Y., Tian, Y. and Jiang, Z.Y. (2015) In Situ Fabrication of Ag3PO4/TiO2 Nanotube Heterojunctions with Enhanced Visible-Light Photocatalytic Activity. Physical Chemistry Chemical Physics, 17, 12199-12206.
https://doi.org/10.1039/C4CP05851H
|