[1]
|
Cho, N.H., Shaw, J.E., Karuranga, S., et al. (2018) IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Research and Clinical Practice, 13, 271-281.
https://doi.org/10.1016/j.diabres.2018.02.023
|
[2]
|
Niewczas, M.A., Pavkov, M.E., Skupien, J., et al. (2019) A Signature of Circulating Inflammatory Proteins and Development of End-Stage Renal Disease in Diabetes. Nature Medicine, 25, 805-813.
https://doi.org/10.1038/s41591-019-0415-5
|
[3]
|
Roy, D., Modi, A., Khokhar, M., et al. (2021) MicroRNA 21 Emerging Role in Diabetic Complications: A Critical Update. Current Diabetes Reviews, 17, 122-135. https://doi.org/10.2174/1573399816666200503035035
|
[4]
|
Sekar, D., Venugopal, B., Sekar, P., et al. (2016) Role of microRNA 21 in Diabetes and Associated/Related Diseases. Gene, 582, 14-18. https://doi.org/10.1016/j.gene.2016.01.039
|
[5]
|
Zhao, M., Zhu, N., Hao, F. and Song, Y. (2019) The Regulatory Role of Non-Coding RNAs on Programmed Cell Death Four in Inflammation and Cancer. Frontiers in Oncology, 18, 9-19. https://doi.org/10.3389/fonc.2019.00919
|
[6]
|
Haque, R., Iuvone, P.M., He, L., et al. (2017) The MicroRNA-21 Signaling Pathway Is Involved in Prorenin Receptor (PRR)-Induced VEGF Expression in ARPE-19 Cells under a Hyperglycemic Condition. Molecular Vision, 14, 251-262.
|
[7]
|
Wang, Y., Yang, L.Z., Yang, D.G., et al. (2020) MiR-21 Antagomir Improves Insulin Resistance and Lipid Metabolism Disorder in Streptozotocin-Induced Type 2 Diabetes Mellitus Rats. Annals of Palliative Medicine, 9, 394-404.
https://doi.org/10.21037/apm.2020.02.28
|
[8]
|
Chen, X., Zhao, L., Xing, Y., et al. (2018) Down-Regulation of microRNA-21 Reduces Inflammation and Podocyte Apoptosis in Diabetic Nephropathy by Relieving the Repression of TIMP3 Expression. Biomedicine & Pharmacotherapy, 108, 7-14. https://doi.org/10.1016/j.biopha.2018.09.007
|
[9]
|
Liu, Y., Luo, F., Wang, B., et al. (2016) STAT3-Regulated Exosomal miR-21 Promotes Angiogenesis and Is Involved in Neoplastic Processes of Transformed Human Bronchial Epithelial Cells. Cancer Letters, 370, 125-135.
https://doi.org/10.1016/j.canlet.2015.10.011
|
[10]
|
Liu, L., Wang, Y., Yan, R., et al. (2019) BMP-7 Inhibits Renal Fibrosis in Diabetic Nephropathy via miR-21 Downregulation. Life Sciences, 238, Article ID: 116957. https://doi.org/10.1016/j.lfs.2019.116957
|
[11]
|
Wang, Y., Liu, L., Peng, W., et al. (2019) Ski-Related Novel Protein Suppresses the Development of Diabetic Nephropathy by Modulating Transforming Growth Factor-β Signaling and microRNA-21 Expression. Journal of Cellular Physiology, 234, 17925-17936. https://doi.org/10.1002/jcp.28425
|
[12]
|
Gilbert, R.E. (2014) The Endothelium in Diabetic Nephropathy. Current Atherosclerosis Reports, 16, 410.
https://doi.org/10.1007/s11883-014-0410-8
|
[13]
|
Maezawa, Y., Takemoto, M. and Yokote, K. (2015) Cell Biology of Diabetic Nephropathy: Roles of Endothelial Cells, Tubulointerstitial Cells and Podocytes. Journal of Diabetes Investigation, 6, 3-15. https://doi.org/10.1111/jdi.12255
|
[14]
|
Cengiz, M., Yavuzer, S., Kılıçkıran Avcı, B., et al. (2015) Circulating miR-21 and eNOS in Subclinical Atherosclerosis in Patients with Hypertension. Clinical and Experimental Hypertension, 37, 643-649.
https://doi.org/10.3109/10641963.2015.1036064
|
[15]
|
Takahashi, T. and Harris, R.C. (2014) Role of Endothelial Nitric Oxide Synthase in Diabetic Nephropathy: Lessons from Diabetic eNOS Knockout Mice. Journal of Diabetes Research, 2014, 590-541.
https://doi.org/10.1155/2014/590541
|
[16]
|
Dai, J., Chen, W., Lin, Y., et al. (2017) Exposure to Concentrated Ambient Fine Particulate Matter Induces Vascular Endothelial Dysfunction via miR-21. International Journal of Biological Sciences, 13, 868-877.
https://doi.org/10.7150/ijbs.19868
|
[17]
|
Kölling, M., Kaucsar, T., Schauerte, C., et al. (2017) Therapeutic miR-21 Silencing Ameliorates Diabetic Kidney Disease in Mice. Molecular Therapy, 25, 165-180. https://doi.org/10.1016/j.ymthe.2016.08.001
|
[18]
|
Lu, X., Fan, Q., Xu, L., et al. (2015) Ursolic Acid Attenuates Diabetic Mesangial Cell Injury through the Up-Regulation of Autophagy via miRNA-21/PTEN/Akt/mTOR Suppression. PLoS ONE, 10, 117-400.
https://doi.org/10.1371/journal.pone.0117400
|
[19]
|
Li, X.Y., Wang, S.S., Han, Z., et al. (2017) Triptolide Restores Autophagy to Alleviate Diabetic Renal Fibrosis through the miR-141-3p/PTEN/Akt/mTOR Pathway. Molecular Therapy Nucleic Acids, 9, 48-56.
https://doi.org/10.1016/j.omtn.2017.08.011
|
[20]
|
Wang, J., Duan, L., Tian, L., et al. (2016) Serum miR-21 May Be a Potential Diagnostic Biomarker for Diabetic Nephropathy. Experimental and Clinical Endocrinology & Diabetes, 124, 417-423.
https://doi.org/10.1055/s-0035-1565095
|
[21]
|
Masoudi, M.S., Mehrabian, E. and Mirzaei, H. (2018) MiR21: A Key Player in Glioblastoma Pathogenesis. Journal of Cellular Biochemistry, 119, 1285-1290. https://doi.org/10.1002/jcb.26300
|
[22]
|
Wu, H., Kong, L., Zhou, S., et al. (2014) The Role of microRNAs in Diabetic Nephropathy. Diabetes Research, 2014, Article ID: 920134. https://doi.org/10.1155/2014/920134
|
[23]
|
Bhatt, K., Kato, M. and Natarajan, R. (2016) Mini-Review: Emerging Roles of microRNAs in the Pathophysiology of Renal Diseases. The American Journal of Physiology—Renal Physiology, 310, F109-F118.
https://doi.org/10.1152/ajprenal.00387.2015
|
[24]
|
Wang, J.Y., Gao, Y.B., Zhang, N., et al. (2014) Tongxinluo Ameliorates Renal Structure and Function by Regulating miR-21-Induced Epithelial-to-Mesenchymal Transition in Diabetic Nephropathy. The American Journal of Physiology—Renal Physiology, 306, F486-F495. https://doi.org/10.1152/ajprenal.00528.2013
|
[25]
|
McClelland, A.D., Herman-Edelstein, M., Komers, R., et al. (2015) miR-21 Promotes Renal Fibrosis in Diabetic Nephropathy by Targeting PTEN and SMAD7. Clinical Science, 129, 1237-1249. https://doi.org/10.1042/CS20150427
|
[26]
|
Matoba, K., Takeda, Y., Nagai, Y., et al. (2019) Unraveling the Role of Inflammation in the Pathogenesis of Diabetic Kidney Disease. International Journal of Molecular Sciences, 20, 3393. https://doi.org/10.3390/ijms20143393
|
[27]
|
Perlman, A.S., Chevalier, J.M., Wilkinson, P., et al. (2015) Serum Inflammatory and Immune Mediators Are Elevated in Early Stage Diabetic Nephropathy. Annals of Clinical & Laboratory Science, 45, 256-263.
|
[28]
|
Meng, X.M. (2019) Inflammatory Mediators and Renal Fibrosis. Advances in Experimental Medicine and Biology, 1165, 381-406. https://doi.org/10.1007/978-981-13-8871-2_18
|
[29]
|
Petrica, L., Milas, O., Vlad, M., et al. (2019) Interleukins and miRNAs Intervene in the Early Stages of Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Biomarkers in Medicine, 13, 1577-1588.
https://doi.org/10.2217/bmm-2019-0124
|
[30]
|
Adela, R., Reddy, P.N.C., Ghosh, T.S., et al. (2019) Serum Protein Signature of Coronary Artery Disease in Type 2 Diabetes Mellitus. Journal of Translational Medicine, 17, 17. https://doi.org/10.1186/s12967-018-1755-5
|
[31]
|
Wynn, T.A., et al. (2007) Common and Unique Mechanisms Regulate Fibrosis in Various Fibroproliferative Diseases. Journal of Clinical Investigation, 117, 524-529. https://doi.org/10.1172/JCI31487
|
[32]
|
张舒媛, 王东超, 李博, 等. 糖尿病肾病研究进展[J]. 世界中医药, 2015, 10(10): 1621-1625.
|
[33]
|
Chao, J., Guo, Y., Li, P., et al. (2017) Role of Kallistatin Treatment in Aging and Cancer by Modulating miR-34a and miR-21 Expression. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 5025610.
https://doi.org/10.1155/2017/5025610
|
[34]
|
Chau, B.N., Xin, C., Hartner, J., et al. (2012) MicroRNA-21 Promotes Fibrosis of the Kidney by Silencing Metabolic Pathways. Science Translational Medicine, 4, 121ra18. https://doi.org/10.1126/scitranslmed.3003205
|
[35]
|
Chung, K.W., Lee, E.K., Lee, M.K., et al. (2018) Impairment of PPARα and the Fatty Acid Oxidation Pathway Aggravates Renal Fibr Dosis during Aging. American Society of Nephrology, 29, 1223-1237.
https://doi.org/10.1681/ASN.2017070802
|
[36]
|
Wang, J.Y., Gao, Y.B., Zhang, N., et al. (2014) miR-21 Overexpression Enhances TGF-β1-Induced Epithelial-to-Mesenchymal Transition by Target smad7 and Aggravates Renal Damage in Diabetic Nephropathy. Molecular and Cellular Endocrinology, 392, 163-172. https://doi.org/10.1016/j.mce.2014.05.018
|
[37]
|
Zhong, X., Chung, A.C., Chen, H.Y., et al. (2013) miR-21 Is a Key Therapeutic Target for Renal Injury in a Mouse Model of Type 2 Diabetes. Diabetologia, 56, 663-674. https://doi.org/10.1007/s00125-012-2804-x
|
[38]
|
Wu, X., Ding, X., Ding, Z., et al. (2018) Total Flavonoids from Leaves of Carya Cathayensis Ameliorate Renal Fibrosis via the miR-21/Smad7 Signaling Pathway. Cellular Physiology and Biochemistry, 49, 1551-1563.
https://doi.org/10.1159/000493458
|
[39]
|
Lan, H.Y. and Chung, A.C.K. (2011) Transforming Growth Factor-β and Smads. Contributions to Nephrology, 170, 75-82. https://doi.org/10.1159/000324949
|
[40]
|
Sun, Q., Miao, J., Luo, J., et al. (2018) The Feedback Loop between miR-21, PDCD4 and AP-1 Functions as a Driving Force for Renal Fibrogenesis. Journal of Cell Science, 131, jcs202317. https://doi.org/10.1242/jcs.202317
|
[41]
|
Liu, X., Zhang, Y., Shi, M., et al. (2018) Notch1 Regulates PTEN Expression to Exacerbate Renal Tubulointerstitial Fibrosis in Diabetic Nephropathy by Inhibiting Autophagy via Interactions with Hes1. Biochemical and Biophysical Research Communications, 497, 1110-1116. https://doi.org/10.1016/j.bbrc.2018.02.187
|
[42]
|
Zhou, Y., Xiong, M., Fang, L., et al. (2013) miR-21-Containing Microvesicles from Injured Tubular Epithelial Cells Promote Tubular Phenotype Transition by Targeting PTEN Protein. The American Journal of Pathology, 183, 1183-1196.
https://doi.org/10.1016/j.ajpath.2013.06.032
|
[43]
|
Wang, X., Gao, Y., Tian, N., et al. (2018) Astragaloside IV Improves Renal Function and Fibrosis via Inhibition of miR-21-Induced Podocyte Dedifferentiation and Mesangial Cell Activation in Diabetic Mice. Drug Design, Development and Therapy, 12, 2431-2442. https://doi.org/10.2147/DDDT.S170840
|
[44]
|
Wang, J., Gao, Y., Ma, M., et al. (2013) Effect of miR-21 on Renal Fibrosis by Regulating MMP-9 and TIMP1 in kk-ay Diabetic Nephropathy Mice. Cell Biochemistry and Biophysics, 67, 537-546.
https://doi.org/10.1007/s12013-013-9539-2
|