|
[1]
|
Dill, K.A., Ozkan, S.B., Shell, M.S. and Weikl, T.R. (2008) The Protein Folding Problem. Annual Review of Biophysics, 37, 289-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dill, K.A. and MacCallum, J.L. (2012) The Protein-Folding Problem, 50 Years on. Science, 338, 1042-1046. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wolynes, P.G. (2015) Evolution, Energy Landscapes and the Para-doxes of Protein Folding. Biochimie, 119, 218-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
McCallister, E.L., Alm, E. and Baker, D. (2000) Critical Role of β-Hairpin Formation in Protein G Folding. Nature Structural Biology, 7, 669-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Religa, T.L., Markson, J.S., Mayor, U., Freund, S.M.V. and Fersht, A.R. (2005) Solution Structure of a Protein Denatured State and Folding Intermediate. Nature, 437, 1053-1056. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Balbach, J., Forge, V., Lau, W.S., Jones, J.A., Van Nuland, N.A.J. and Dobson, C.M. (1997) Detection of Residue Contacts in a Protein Folding Intermediate. Proceedings of the National Academy of Sciences of the United States of America, 94, 7182-7185. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. and Gaub, H.E. (1997) Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM. Science, 276, 1109-1112. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhao, X.T., Zhao, N., Shi, Y., Xin, H.B. and Li, B.J. (2020) Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation. Micromachines, 11, Article No. 114. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Le, S.M., Yu, M. and Yan, J. (2019) Phosphorylation Reduces the Me-chanical Stability of the Alpha-Catenin/Beta- Catenin Complex. Angewandte Chemie-International Edition, 58, 18663-18669. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gosse, C. and Croquette, V. (2002) Magnetic Tweezers: Micromanip-ulation and Force Measurement at the Molecular Level. Biophysical Journal, 82, 3314-3329. [Google Scholar] [CrossRef]
|
|
[11]
|
Chen, H., Fu, H.X., Zhu, X.Y., Cong, P.W., Nakamura, F. and Yan, J. (2011) Improved High-Force Magnetic Tweezers for Stretching and Refolding of Proteins and Short DNA. Biophysical Journal, 100, 517-523. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pastore, A., Saudek, V., Ramponi, G. and Williams, R.J.P. (1992) 3-Dimensional Structure of Acylphosphatase Refinement and Structure-Analysis. Journal of Molecular Biology, 224, 427-440. [Google Scholar] [CrossRef]
|
|
[13]
|
Stefani, M., Taddei, N. and Ramponi, G. (1997) Insights into Acylphosphatase Structure and Catalytic Mechanism. Cellular and Molecular Life Sciences, 53, 141-151. [Google Scholar] [CrossRef]
|
|
[14]
|
van Nuland, N.A.J., Chiti, F., Taddei, N., Raugei, G., Ramponi, G. and Dobson, C.M. (1998) Slow Folding of Muscle Acylphosphatase in the Absence of Intermediates. Journal of Molecular Biology, 283, 883-891. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chiti, F., Taddei, N., Webster, P., Hamada, D., Fiaschi, T., Ramponi, G. and Dobson, C.M. (1999) Acceleration of the Folding of Acylphosphatase by Stabilization of Local Secondary Struc-ture. Nature Structural Biology, 6, 380-387.
https://www.nature.com/articles/nsb0499_380 [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chiti, F., Taddei, N., White, P.M., Bucciantini, M., Magherini, F., Stefani, M. and Dobson, C.M. (1999) Mutational Analysis of Acylphosphatase Suggests the Importance of Topology and Contact Order in Protein Folding. Nature Structural Biology, 6, 1005-1009.
https://www.nature.com/articles/nsb1199_1005 [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Taddei, N., Chiti, F., Paoli, P., Fiaschi, T., Bucciantini, M., Stefani, M., Dobson, C.M. and Ramponi, G. (1999) Thermodynamics and Kinetics of Folding of Common-Type Acylphosphatase: Comparison to the Highly Homologous Muscle Isoenzyme. Biochemistry, 38, 2135-2142. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Taddei, N., Capanni, C., Chiti, F., Stefani, M., Dobson, C.M. and Ramponi, G. (2001) Folding and Aggregation Are Selectively Influenced by the Conformational Preferences of the Alpha-Helices of Muscle Acylphosphatase. Journal of Biological Chemistry, 276, 37149-37154. [Google Scholar] [CrossRef]
|
|
[19]
|
Arad-Haase, G., Chuartzman, S.G., Dagan, S., Nevo, R., Kouza, M., Binh Khanh, M., Hung Tien, N., Li, M.S. and Reich, Z. (2010) Mechanical Unfolding of Acylphosphatase Studied by Single-Molecule Force Spectroscopy and MD Simulations. Biophysical Journal, 99, 238-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Chen, H., Yuan, G.H., Winardhi, R.S., Yao, M.X., Popa, I., Fer-nandez, J.M. and Yan, J. (2015) Dynamics of Equilibrium Folding and Unfolding Transitions of Titin Immunoglobulin Domain under Constant Forces. Journal of the American Chemical Society, 137, 3540-3546. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Guo, Z.L., Hong, H.Y., Sun, H., Zhang, X.F., Wu, C.X., Li, B., Cao, Y. and Chen, H. (2021) SpyTag/SpyCatcher Tether as a Fingerprint and Force Marker in Single-Molecule Force Spectros-copy Experiments. Nanoscale, 13, 11262-11269. [Google Scholar] [CrossRef]
|
|
[22]
|
Guo, Z.L., Hong, H.Y., Yuan, G.H., Qian, H., Li, B., Cao, Y., Wang, W., Wu, C.X. and Chen, H. (2020) Hidden Intermediate State and Second Pathway Determining Folding and Unfolding Dynamics of GB1 Protein at Low Forces. Physical Review Letters, 125, Article ID: 198101. [Google Scholar] [CrossRef]
|
|
[23]
|
Su, H.H., Sun, H., Hong, H.Y., Guo, Z.L., Yu, P. and Chen, H. (2021) Equilibrium Folding and Unfolding Dynamics to Reveal Detailed Free Energy Landscape of Src SH3 Protein by Magnetic Tweezers. Chinese Physics B, 30, Article ID: 078201. [Google Scholar] [CrossRef]
|
|
[24]
|
Yuan, G., Le, S., Yao, M., Qian, H., Zhou, X., Yan, J. and Chen, H. (2017) Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains. Angewandte Chemie-International Edition, 56, 5490-5493. [Google Scholar] [CrossRef] [PubMed]
|