[1]
|
Gullo, I., Grillo, F., Mastracci, L., et al. (2020) Precancerous Lesions of the Stomach, Gastric Cancer and Hereditary Gastric Cancer Syndromes. Pathologica, 112, 166-185. https://doi.org/10.32074/1591-951X-166
|
[2]
|
Chetroiu, D., Pop, C.S., Filip, P.V., et al. (2021) How and Why do We Screen for Colorectal Cancer? Journal of Medicine and Life, 14, 462-467. https://doi.org/10.25122/jml-2021-0192
|
[3]
|
Bhinder, B., Gilvary, C., Madhukar, N.S., et al. (2021) Ar-tificial Intelligence in Cancer Research and Precision Medicine. Cancer Discovery, 11, 900-915. https://doi.org/10.1158/2159-8290.CD-21-0090
|
[4]
|
Alagappan, M., Brown, J.R.G., Mori, Y., et al. (2018) Artifi-cial Intelligence in Gas-Trointestinal Endoscopy: The Future Is Almost Here . World Journal of Gastrointestinal Endos-copy, 10, 239-249.
https://doi.org/10.4253/wjge.v10.i10.239
|
[5]
|
Rees, C.J. and Koo, S. (2019) Artificial Intelligence-Upping the Game in Gastrointestinal Endoscopy? Nature Reviews Gastroenterology & Hepatology, 16, 584-585. https://doi.org/10.1038/s41575-019-0178-y
|
[6]
|
Jin, P., Ji, X., Kang, W., et al. (2020) Artificial Intelligence in Gastric Cancer: A Systematic Review. Journal of Cancer Research and Clinical Oncology, 146, 2339-2350. https://doi.org/10.1007/s00432-020-03304-9
|
[7]
|
Kim, J.H., Nam, S.J. and Park, S.C. (2021) Usefulness of Arti-ficial Intelligence in Gastric Neoplasms. World Journal of Gastroenterology, 27, 3543-3555. https://doi.org/10.3748/wjg.v27.i24.3543
|
[8]
|
Japanese Gastric Cancer Association (2011) Japanese Gastric Can-cer Treatment Guidelines 2010 (Ver. 3). Gastric Cancer, 14, 113-123. https://doi.org/10.1007/s10120-011-0042-4
|
[9]
|
Choi, J., Kim, S.G., Im, J.P., et al. (2010) Comparison of Endo-scopic Ultrasonography and Conventional Endoscopy for Prediction of Depth of Tumor Invasion in Early Gastric Cancer. Endoscopy, 42, 705-713.
https://doi.org/10.1055/s-0030-1255617
|
[10]
|
Pei, Q., Wang, L., Pan, J., et al. (2015) Endoscopic Ultrasonography for Staging Depth of Invasion in Early Gastric Cancer: A Meta-Analysis. Journal of Gastroenterology and Hepatology, 30, 1566-1573.
https://doi.org/10.1111/jgh.13014
|
[11]
|
Sano, T., Okuyama, Y., Kobori, O., Shimizu, T., et al. (1990) Early Gastric Cancer. Digestive Diseases and Sciences, 35, 1340-1344. https://doi.org/10.1007/BF01536738
|
[12]
|
Abe, S., Oda, I., Shimazu, T., et al. (2011) Depth-Predicting Score for Differentiated Early Gastric Cancer. Gastric Cancer, 14, 35-40. https://doi.org/10.1007/s10120-011-0002-z
|
[13]
|
Kubota, K., Kuroda, J., Yoshida, M., et al. (2012) Medical Image Analysis: Computer-Aided Diagnosis of Gastric Cancer Invasion on Endoscopic Images. Surgical Endoscopy, 26, 1485-1489.
https://doi.org/10.1007/s00464-011-2036-z
|
[14]
|
Zhu, Y., Wang, Q.C., Xu, M.D., et al. (2019) Application of Convolutional Neural Network in the Diagnosis of the Invasion Depth of Gastric Cancer Based on Conventional Endos-copy. Gastrointestinal Endoscopy, 89, 806-815.
https://doi.org/10.1016/j.gie.2018.11.011
|
[15]
|
Bessède, E., Arantes, V., Mégraud, F., et al. (2017) Diagnosis of Helicobacter pylori Infection. Helicobacter, 22, e12404. https://doi.org/10.1111/hel.12404
|
[16]
|
Nakashima, H., Kawahira, H., Kawachi, H., et al. (2018) Artificial Intelligence Diagnosis of Helicobacter pylori Infection Using Blue Laser Imaging-Bright and Linked Color Imaging: A Single-Center Prospective Study. Annals of Gastroenterology, 31, 462-468. https://doi.org/10.20524/aog.2018.0269
|
[17]
|
Mandel, J.S., Bond, J.H., Church, T.R., et al. (1993) Re-ducing Mortality from Colorectal Cancer by Screening for Fecal Occult Blood. Minnesota Colon Cancer Control Study. New England Journal of Medicine, 328, 1365-1371.
https://doi.org/10.1056/NEJM199305133281901
|
[18]
|
Maida, M., Macaluso, F.S., Ianiro, G., et al. (2017) Screen-ing of Colorectal Cancer: Present and Future. Expert Review of Anticancer Therapy, 17, 1131-1146. https://doi.org/10.1080/14737140.2017.1392243
|
[19]
|
Lauby-Secretan, B. (2018) Eine internationale Sichtweise auf das Darmkrebs-Screening. Tumor Diagnostik & Therapie, 39, 221-222. https://doi.org/10.1055/a-0583-8941
|
[20]
|
Morson, B. (1974) The Polyp-Cancer Sequence in the Large Bowel. Proceedings of the Royal Society of Medicine, 67, 451-457. https://doi.org/10.1177/00359157740676P115
|
[21]
|
Hewitson, P., Glasziou, P.P., Irwig, L., et al. (2007) Screening for Colorectal Cancer Using the Faecal Occult Blood Test, Hemoccult. Cochrane Database of Systematic Reviews, No. 1, CD001216.
https://doi.org/10.1002/14651858.CD001216.pub2
|
[22]
|
Doubeni, C.A., Corley, D.A., Quinn, V.P., et al. (2018) Effectiveness of Screening Colonoscopy in Reducing the Risk of Death from Right and Left Colon Cancer: A Large Community-Based Study. Gut, 67, 291-298.
https://doi.org/10.1136/gutjnl-2016-312712
|
[23]
|
Brenner, H., Stock, C. and Hoffmeister, M. (2014) Effect of Screening Sigmoidoscopy and Screening Colonoscopy on Colorectal Cancer Incidence and Mortality: Systematic Review and Meta-Analysis of Randomised Controlled Trials and Observational Studies. BMJ, 348, Article No. 2467. https://doi.org/10.1136/bmj.g2467
|
[24]
|
Smith, R.A. andrews, K.S., Brooks, D., et al. (2019) Cancer Screening in the United States, 2019: A Review of Current American Cancer Society Guidelines and Current Issues in Cancer Screening. CA: A Cancer Journal for Clinicians, 69, 184-210. https://doi.org/10.3322/caac.21557
|
[25]
|
Issa, I.A. and Noureddine, M. (2017) Colorectal Cancer Screening: An Updated Review of the Available Options. World Journal of Gastroenterology, 23, 5086-5096. https://doi.org/10.3748/wjg.v23.i28.5086
|
[26]
|
Nartowt, B.J., Hart, G.R., Muhammad, W., et al. (2020) Robust Machine Learning for Colorectal Cancer Risk Prediction and Stratification. Fron-tiers in Big Data, 3, Article No. 6. https://doi.org/10.3389/fdata.2020.00006
|
[27]
|
Leufkens, A.M., Van Oijen, M.G.H., Vleggaar, F.P., et al. (2012) Factors Influencing the Miss Rate of Polyps in a Back-to-Back Colonoscopy Study. Endoscopy, 44, 470-475. https://doi.org/10.1055/s-0031-1291666
|
[28]
|
Corley, D.A., Jensen, C.D., Marks, A.R., et al. (2014) Adenoma Detection Rate and Risk of Colorectal Cancer and Death. New England Journal of Medicine, 370, 1298-1306. https://doi.org/10.1056/NEJMoa1309086
|
[29]
|
Coe, S.G. and Wallace, M.B. (2013) Assessment of Adenoma Detection Rate Benchmarks in Women versus Men. Gastrointestinal Endoscopy, 77, 631-635. https://doi.org/10.1016/j.gie.2012.12.001
|
[30]
|
Ahn, S.B., Han, D.S., Bae, J.H., et al. (2012) The Miss Rate for Colorectal Adenoma Determined by Quality-Adjusted, Back-to-Back Colonoscopies. Gut and Liver, 6, Article No. 64. https://doi.org/10.5009/gnl.2012.6.1.64
|
[31]
|
Wang, K.W. and Dong, M. (2020) Potential Applications of Artificial Intelligence in Colorectal Polyps and Cancer: Recent Advances and Prospects. World Journal of Gastroenterology, 26, 5090-5100.
https://doi.org/10.3748/wjg.v26.i34.5090
|
[32]
|
Iannicelli, E., Di Renzo, S., Ferri, M., et al. (2014) Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Predic-tion. Korean Journal of Radiology, 15, 37-44.
https://doi.org/10.3348/kjr.2014.15.1.37
|
[33]
|
Fernandez, L.M., Parlade, A.J., Wasser, E.J., et al. (2019) How Re-liable Is CT Scan in Staging Right Colon Cancer? Diseases of the Colon & Rectum, 62, 960-964. https://doi.org/10.1097/DCR.0000000000001387
|
[34]
|
Koçak, B., Durmaz, E.Ş., Ateş, E., et al. (2019) Radiomics with Artificial Intelligence: A the Copyediting, Typesetting, Pagination and Proofreading Process, Which May Lead to Differences between This Version and the Version of Record.
|
[35]
|
Wang, H., Wang, H., Song, L., et al. (2019) Auto-matic Diagnosis of Rectal Cancer Based on CT Images by Deep Learning Method. 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, 19-21 October 2019, 1-5. https://doi.org/10.1109/CISP-BMEI48845.2019.8965731
|
[36]
|
Ding, L., Liu, G., Zhang, X., et al. (2020) A Deep Learning Nomogram Kit for Predicting Metastatic Lymph Nodes in Rectal Cancer. Cancer Medicine, 9, 8809-8820. https://doi.org/10.1002/cam4.3490
|
[37]
|
Bedrikovetski, S., Dudi-Venkata, N.N., Maicas, G., et al. (2021) Artificial Intelligence for the Diagnosis of Lymph Node Metastases in Patients with Abdominopelvic Malignancy: A Systematic Review and Meta-Analysis. Artificial Intelligence in Medicine, 113, Article ID: 102022. https://doi.org/10.1016/j.artmed.2021.102022
|
[38]
|
Lundervold, A.S. and Lundervold, A. (2019) An Overview of Deep Learning in Medical Imaging Focusing on MRI. Zeitschrift für Medizinische Physik, 29, 102-127. https://doi.org/10.1016/j.zemedi.2018.11.002
|
[39]
|
Benjamens, S., Dhunnoo, P. and Mesko, B. (2020) The State of Artificial Intelligence-Based FDA-Approved Medical Devices and Algorithms: An Online Database. NPJ Digital Medi-cine, 3, 1-8.
https://doi.org/10.1038/s41746-020-00324-0
|
[40]
|
Abdullah, Y.I., Schuman, J.S., Shabsigh, R., et al. (2021) Ethics of Artificial Intelligence in Medicine and Ophthalmology. The Asia-Pacific Journal of Ophthalmology, 10, 289-298. https://doi.org/10.1097/APO.0000000000000397
|