[1]
|
Trahey, L., Brushett, F.R., Balsara, N.P., Ceder, G., Cheng, L., Chiang, Y.M., Hahn, N.T., Ingram, B.J., Minteer, S.D., Moore, J.S., Mueller, K.T., Nazar, L.F., Persson, K.A., Siegel, D.J., Xu, K., Zavadil, K.R., Srinivasan, V. and Crabtree, G.W. (2020) Energystorage Emerging: A Perspective from the Joint Center for Energy Storage Research. Proceedings of the National Academy of Sciences of the United States of America, 117, 12550-12557.
https://doi.org/10.1073/pnas.1821672117
|
[2]
|
Chen, Y., Yue, M., Liu, C., Zhang, H., Yu, Y., Li, X. and Zhang, H. (2019) Long Cycle Life Lithium Metal Batteries Enabled with Upright Lithium Anode. Advanced Functional Materials, 29, Article ID: 1806752.
https://doi.org/10.1002/adfm.201806752
|
[3]
|
Long, R., Wang, G.L., Hu, Z.L., Sun, P.F. and Zhang, L. (2021) Gradually Activated Lithium Uptake in Sodium Citrate toward High-Capacity Organic Anode for Lithium-Ion Batteries. Rare Metals, 40, 1366-1372.
https://doi.org/10.1007/s12598-020-01502-5
|
[4]
|
Placke, T., Kloepsch, R., Dühnen, S. and Winter, M. (2017) Lithium Ion, Lithium Metal, and Alternative Rechargeable Battery Technologies: The Odyssey for High Energy Density. Journal of Solid State Electrochemistry, 21, 1939-1964.
https://doi.org/10.1007/s10008-017-3610-7
|
[5]
|
Li, M., Lu, J., Chen, Z. and Amine, K. (2018) 30 Years of Lithium-Ion Batteries. Advanced Materials, 30, Article ID: 1800561. https://doi.org/10.1002/adma.201800561
|
[6]
|
Qian, J., Adams, B.D., Zheng, J., Xu, W., Henderson, W.A., Wang, J., Bowden, M.E., Xu, S., Hu, J. and Zhang, J.G. (2016) Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials, 26, 7094-7102.
https://doi.org/10.1002/adfm.201602353
|
[7]
|
Yang, T., Li, L., Wu, F. and Chen, R. (2020) A Soft Lithiophilic Graphene Aerogel for Stable Lithium Metal Anode. Advanced Functional Materials, 30, Article ID: 2002013. https://doi.org/10.1002/adfm.202002013
|
[8]
|
Yan, C.L. (2020) Realizing High Performance of Solid-State Lithium Metal Batteries by Flexible Ceramic/Polymer Hybrid Solid Electrolyte. Rare Metals, 39, 458-459. https://doi.org/10.1007/s12598-020-01417-1
|
[9]
|
Vaalma, C., Buchholz, D., Weil, M. and Passerini, S. (2018) A Cost and Resource Analysis of Sodium-Ion Batteries. Nature Reviews Materials, 3, Article No. 18013. https://www.energy.gov/eere/vehicles/batteries
|
[10]
|
US Department of Energy, Batteries, Energy. Gov. (2020). https://www.energy.gov/eere/vehicles/batteries
|
[11]
|
Evarts, E.C. (2015) Lithium Batteries: To the Limits of Lithium. Nature, 526, S93-S95.
https://doi.org/10.1038/526S93a
|
[12]
|
Liu, Z., Yu, Q., Zhao, Y., He, R., Xu, M., Feng, S., Li, S., Zhou, L. and Mai, L. (2019) Silicon Oxides: A Promising Family of Anode Materials for Lithium-Ion Batteries. Chemical Society Reviews, 48, 285-309.
https://doi.org/10.1039/C8CS00441B
|
[13]
|
Li, J., Yang, J.Y., Wang, J.T. and Lu, S.G. (2019) A Scalable Synthesis of Silicon Nanoparticles as High-Performance Anode Material for Lithium-Ion Batteries. Rare Metals, 38, 199-205. https://doi.org/10.1007/s12598-017-0936-3
|
[14]
|
Cheng, X.B., Zhang, R., Zhao, C.Z. and Zhang, Q. (2017) Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 117, 10403-10473. https://doi.org/10.1021/acs.chemrev.7b00115
|
[15]
|
Albertus, P., Babinec, S., Litzelman, S. and Newman, A. (2018) Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries. Nature Energy, 3, 16-21.
https://doi.org/10.1038/s41560-017-0047-2
|
[16]
|
Li, Q., Zhu, H., Tang, Y., Zhu, P., Ma, H., Ge, C. and Yan, F. (2019) Chemically Grafting Nanoscale UIO-66 onto Polypyrrole Nanotubes for Long-Life Lithium-Sulfur Batteries. Chemical Communications, 55, 12108-12111.
https://doi.org/10.1039/C9CC06362E
|
[17]
|
Duffner, F., Kronemeyer, N., Tübke, J., Leker, J., Winter, M. and Schmuch, R. (2021) Post-Lithium-Ion Battery Cell Production and Its Compatibility with Lithium-Ion Cell Production Infrastructure. Nature Energy, 6, 123-134.
https://doi.org/10.1038/s41560-020-00748-8
|
[18]
|
Lin, D., Liu, Y. and Cui, Y. (2017) Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology, 12, 194-206. https://doi.org/10.1038/nnano.2017.16
|
[19]
|
Han, B., Xu, D., Chi, S.S., He, D., Zhang, Z., Du, L., Gu, M., Wang, C., Meng, H., Xu, K., Zheng, Z. and Deng, Y. (2020) 500 Wh kg−1 Class Li Metal Battery Enabled by a Self-Organized Core-Shell Composite Anode. Advanced Materials, 32, Article ID: 2004793. https://doi.org/10.1002/adma.202004793
|
[20]
|
Liu, J., Qian, T., Wang, M., Zhou, J., Xu, N. and Yan, C. (2018) Use of Tween Polymer to Enhance the Compatibility of the Li/Electrolyte Interface for the High-Performance and High-Safety Quasi-Solid-State Lithium-Sulfur Battery. Nano Letters, 18, 4598-4605. https://doi.org/10.1021/acs.nanolett.8b01882
|
[21]
|
Shen, X., Qian, T., Chen, P., Liu, J., Wang, M. and Yan, C. (2018) Bioinspired Polysulfiphobic Artificial Interphase Layer on Lithium Metal Anodes for Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 10, 30058-30064.
https://doi.org/10.1021/acsami.8b12093
|
[22]
|
Liu, J., Cao, Y., Zhou, J., Wang, M., Chen, H., Yang, T., Sun, Y., Qian, T. and Yan, C. (2020) Artificial Lithium Isopropyl-Sulfide Macromolecules as an Ion-Selective Interface for Long-Life Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 12, 54537-54544. https://doi.org/10.1021/acsami.0c13835
|
[23]
|
Yan, K., Lu, Z., Lee, H.W., Xiong, F., Hsu, P.C., Li, Y., Zhao, J., Chu, S. and Cui, Y. (2016) Selective Deposition and Stable Encapsulation of Lithium through Heterogeneous Seeded Growth. Nature Energy, 1, Article No. 16010.
https://doi.org/10.1038/nenergy.2016.10
|
[24]
|
Ye, H., Zheng, Z.J., Yao, H.R., Liu, S.C., Zuo, T.T., Wu, X.W., Yin, Y.X., Li, N.W., Gu, J.J., Cao, F.F. and Guo, Y.G. (2019) Guiding Uniform Li Plating/Stripping through Lithium-Aluminum Alloying Medium for Long-Life Li Metal Batteries. Angewandte Chemie International Edition, 58, 1094-1099. https://doi.org/10.1002/anie.201811955
|
[25]
|
Xiang, J., Yuan, L., Shen, Y., Cheng, Z., Yuan, K., Guo, Z., Zhang, Y., Chen, X. and Huang, Y. (2018) Improved Rechargeability of Lithium Metal Anode via Controlling Lithium-Ion Flux. Advanced Energy Materials, 8, Article ID: 1802352. https://doi.org/10.1002/aenm.201802352
|
[26]
|
Lin, D., Zhao, J., Sun, J., Yao, H., Liu, Y., Yan, K. and Cui, Y. (2017) Three-Dimensional Stable Lithium Metal Anode with Nanoscale Lithium Islands Embedded in Ionically Conductive Solid Matrix. Proceedings of the National Academy of Sciences of the United States of America, 114, 4613-4618. https://doi.org/10.1073/pnas.1619489114
|
[27]
|
Xu, Y., Li, T., Wang, L. and Kang, Y. (2019) Interlayered Dendrite-Free Lithium Plating for High-Performance Lithium-Metal Batteries. Advanced Materials, 31, Article ID: 1901662. https://doi.org/10.1002/adma.201901662
|
[28]
|
Yun, Q., He, Y.B., Lv, W., Zhao, Y., Li, B., Kang, F. and Yang, Q.H. (2016) Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes. Advanced Materials, 28, 6932-6939. https://doi.org/10.1002/adma.201601409
|
[29]
|
Feng, X., Ren, D., He, X. and Ouyang, M. (2020) Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule, 4, 743-770. https://doi.org/10.1016/j.joule.2020.02.010
|
[30]
|
Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y. and He, X. (2018) Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Materials, 10, 246-267.
https://doi.org/10.1016/j.ensm.2017.05.013
|
[31]
|
Yan, P., Zhu, Y., Pan, X. and Ji, H. (2021) A Novel Flame-Retardant Electrolyte Additive for Safer Lithium-Ion Batteries. International Journal of Energy Research, 45, 2776-2784. https://doi.org/10.1002/er.5972
|
[32]
|
Zhang, C., Zhang, L. and Yu, G. (2020) Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Accounts of Chemical Research, 53, 1648-1659.
https://doi.org/10.1021/acs.accounts.0c00360
|
[33]
|
Zhou, J., Qian, T., Liu, J., Wang, M., Zhang, L. and Yan, C. (2019) High-Safety All-Solid-State Lithium-Metal Battery with High-Ionic-Conductivity Thermoresponsive Solid Polymer Electrolyte. Nano Letters, 19, 3066-3073.
https://doi.org/10.1021/acs.nanolett.9b00450
|
[34]
|
Gong, Y.X. and Wang, J.J. (2020) Solid-State Batteries: From Fundamental Interface Characterization to Realize Sustainable Promise. Rare Metals, 39, 743-744. https://doi.org/10.1007/s12598-020-01429-x
|
[35]
|
Alexander, G.V., Indu, M.S., Kamakshy, S. and Murugan, R. (2020) Development of Stable and Conductive Interface between Garnet Structured Solid Electrolyte and Lithium Metal Anode for High Performance Solid-State Battery. Electrochimica Acta, 332, Article ID: 135511. https://doi.org/10.1016/j.electacta.2019.135511
|
[36]
|
Gorgas, I., Herke, P. and Schoeck, G. (1981) The Plastic Behaviour of Lithium Single Crystals. Physica Status Solidi, 67, 617-623. https://doi.org/10.1002/pssa.2210670232
|
[37]
|
Xu, G., Huang, L., Lu, C., Zhou, X. and Cui, G. (2020) Revealing the Multilevel Thermal Safety of Lithium Batteries. Energy Storage Materials, 31, 72-86. https://doi.org/10.1016/j.ensm.2020.06.004
|
[38]
|
Shen, Y., Han, S., Xu, Q., Wang, Y., Xu, Z., Zhao, B. and Zhang, R. (2016) Optimizing Degradation of Reactive Yellow 176 by Dielectric Barrier Discharge Plasma Combined with TiO2 Nano-Particles Prepared Using Response Surface Methodology. Journal of the Taiwan Institute of Chemical Engineers, 60, 302-312.
https://doi.org/10.1016/j.jtice.2015.10.018
|
[39]
|
Wang, Z., Liu, J., Wang, M., Shen, X., Qian, T. and Yan, C. (2020) Toward Safer Solid-State Lithium Metal Batteries: A Review. Nanoscale Advances, 2, 1828-1836. https://doi.org/10.1039/D0NA00174K
|
[40]
|
Schaeffffer, A.M.J., Talmadge, W.B., Temple, S.R. and Deemyad, S. (2012) High Pressure Melting of Lithium. Physical Review Letters, 109, Article ID: 185702. https://doi.org/10.1103/PhysRevLett.109.185702
|
[41]
|
Chung, H. and Kang, B. (2017) Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell. Chemistry of Materials, 29, 8611-8619.
https://doi.org/10.1021/acs.chemmater.7b02301
|
[42]
|
Wu, Y., Wang, S., Li, H., Chen, L. and Wu, F. (2021) Progress in Thermal Stability of All-Solid-State-Li-Ion-Batteries. InfoMat, 3, 827-853. https://doi.org/10.1002/inf2.12224
|
[43]
|
Xie, S., Deng, Y., Mei, J., Yang, Z., Lau, W.M. and Liu, H. (2016) Facile Synthesis of CoS2/CNTs Composite and Its Exploitation in Thermal Battery Fabrication. Composites Part B: Engineering, 93, 203-209.
https://doi.org/10.1016/j.compositesb.2016.03.038
|
[44]
|
Zhang, W.J. (2011) A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries. Journal of Power Sources, 196, 13-24. https://doi.org/10.1016/j.jpowsour.2010.07.020
|
[45]
|
Heligman, B.T. and Manthiram, A. (2021) Elemental Foil Anodes for Lithium-Ion Batteries. ACS Energy Letters, 6, 2666-2672. https://doi.org/10.1021/acsenergylett.1c01145
|
[46]
|
Huggins, R.A. (1999) Lithium Alloy Negative Electrodes. Journal of Power Sources, 81-82, 13-19.
https://doi.org/10.1016/S0378-7753(99)00124-X
|
[47]
|
Besenhard, J.O., Yang, J. and Winter, M. (1997) Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries. Journal of Power Sources, 68, 87-90. https://doi.org/10.1016/S0378-7753(96)02547-5
|
[48]
|
Huang, H.F., Gui, Y.N., Sun, F., Liu, Z.J., Ning, H.L., Wu, C. and Chen, L.B. (2021) In Situ Formed Three-Dimensional (3D) Lithium-Boron (Li-B) Alloy as a Potential Anode for Next-Generation Lithium Batteries. Rare Metals, 40, 3494-3500. https://doi.org/10.1007/s12598-021-01708-1
|
[49]
|
Zhang, T., Hong, M., Yang, J., Xu, Z., Wang, J., Guo, Y. and Liang, C. (2018) A High Performance Lithium-Ion-Sulfur Battery with a Free-Standing Carbon Matrix Supported Li-Rich Alloy Anode. Chemical Science, 9, 8829-8835.
https://doi.org/10.1039/C8SC02897D
|
[50]
|
Qiu, H., Tang, T., Asif, M., Li, W., Zhang, T. and Hou, Y. (2019) Stable Lithium Metal Anode Enabled by Lithium Metal Partial Alloying. Nano Energy, 65, Article ID: 103989. https://doi.org/10.1016/j.nanoen.2019.103989
|
[51]
|
Choudhury, S., Tu, Z., Stalin, S., Vu, D., Fawole, K., Gunceler, D., Sundararaman, R. and Archer, L.A. (2017) Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie International Edition, 56, 13070-13077. https://doi.org/10.1002/anie.201707754
|
[52]
|
Weppner, W. and Huggins, R.A. (1977) Electrochemical Investigation of the Chemical Diffusion, Partial Ionic Conductivities, and Other Kinetic Parameters in Li3Sb and Li3Bi. Journal of Solid State Chemistry, 22, 297-308.
https://doi.org/10.1016/0022-4596(77)90006-8
|
[53]
|
Weppner, W. and Huggins, R.A. (1978) Thermodynamic Properties of the Intermetallic Systems Lithium-Antimony and Lithium-Bismuth. Journal of the Electrochemical Society, 125, 7-14. https://doi.org/10.1149/1.2131401
|
[54]
|
Weppner, W. and Huggins, R.A. (1977) Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li3Sb. Journal of the Electrochemical Society, 124, 1569-1578.
https://doi.org/10.1149/1.2133112
|
[55]
|
Wen, C.J. and Huggins, R.A. (1981) Electrochemical Investigation of the Lithium-Gallium System. Journal of the Electrochemical Society, 128, 1636-1641. https://doi.org/10.1149/1.2127701
|
[56]
|
Zhou, J., Qian, T., Wang, Z., Liu, J., Sun, Y., Peng, M., Zhu, Y., Li, S. and Yan, C. (2021) Healable Lithium Alloy Anode with Ultrahigh Capacity. Nano Letters, 21, 5021-5027. https://doi.org/10.1021/acs.nanolett.1c00608
|
[57]
|
Jin, S., Ye, Y., Niu, Y., Xu, Y., Jin, H., Wang, J., Sun, Z., Cao, A., Wu, X., Luo, Y., Ji, H. and Wan, L.J. (2020) Solid-Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode. Journal of the American Chemical Society, 142, 8818-8826. https://doi.org/10.1021/jacs.0c01811
|
[58]
|
Xu, T., Gao, P., Li, P., Xia, K., Han, N., Deng, J., Li, Y. and Lu, J. (2020) Fast-Charging and Ultrahigh-Capacity Lithium Metal Anode Enabled by Surface Alloying. Advanced Energy Materials, 10, Article ID: 1902343.
https://doi.org/10.1002/aenm.201902343
|
[59]
|
Gao, Y., Yi, R., Li, Y.C., Song, J., Chen, S., Huang, Q., Mallouk, T.E. and Wang, D. (2017) General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes. Journal of the American Chemical Society, 139, 17359-17367. https://doi.org/10.1021/jacs.7b07584
|
[60]
|
Gu, X., Dong, J. and Lai, C. (2021) Li-Containing Alloys Beneficial for Stabilizing Lithium Anode: A Review. English Reports, 3, e12339. https://doi.org/10.1002/eng2.12339
|
[61]
|
Zhang, R., Chen, X., Shen, X., Zhang, X.Q., Chen, X.R., Cheng, X.B., Yan, C., Zhao, C.Z. and Zhang, Q. (2018) Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries. Joule, 2, 764-777.
https://doi.org/10.1016/j.joule.2018.02.001
|
[62]
|
Huang, G., Han, J., Zhang, F., Wang, Z., Kashani, H., Watanabe, K. and Chen, M. (2019) Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes. Advanced Materials, 31, Article ID: 1805334. https://doi.org/10.1002/adma.201805334
|
[63]
|
Liang, Z., Lin, D., Zhao, J., Lu, Z., Liu, Y., Liu, C., Lu, Y., Wang, H., Yan, K., Tao, X. and Cui, Y. (2016) Composite Lithium Metal Anode by Melt Infusion of Lithium into a 3D Conducting Scaffold with Lithiophilic Coating. Proceedings of the National Academy of Sciences of the United States of America, 113, 2862-2867.
https://doi.org/10.1073/pnas.1518188113
|
[64]
|
Fu, L., Wan, M., Zhang, B., Yuan, Y., Jin, Y., Wang, W., Wang, X., Li, Y., Wang, L., Jiang, J., Lu, J. and Sun, Y. (2020) A Lithium Metal Anode Surviving Battery Cycling above 200˚C. Advanced Materials, 32, Article ID: 2000952.
https://doi.org/10.1002/adma.202000952
|
[65]
|
Hou, T.Z., Xu, W.T., Chen, X., Peng, H.J., Huang, J.Q. and Zhang, Q. (2017) Lithium Bond Chemistry in Lithium-Sulfur Batteries. Angewandte Chemie International Edition, 56, 8178-8182.
https://doi.org/10.1002/anie.201704324
|
[66]
|
Zheng, S., Ma, J., Wu, Z.S., Zhou, F., He, Y.B., Kang, F., Cheng, H.M. and Bao, X. (2018) All-Solid-State Flexible Planar Lithium Ion Micro-Capacitors. Energy & Environmental Science, 11, 2001-2009.
https://doi.org/10.1039/C8EE00855H
|
[67]
|
Kutbee, A.T., Bahabry, R.R., Alamoudi, K.O., Ghoneim, M.T., Cordero, M.D., Almuslem, A.S., Gumus, A., Diallo, E.M., Nassar, J.M., Hussain, A.M., Khashab, N.M. and Hussain, M.M. (2017) Flexible and Biocompatible High-Performance Solid-State Micro-Battery for Implantable Orthodontic System. npj Flexible Electronics, 1, Article No. 7. https://doi.org/10.1038/s41528-017-0008-7
|
[68]
|
Dai, H., Huang, M., Qian, J., Liu, J., Meng, C., Li, Y., Ming, G., Zhang, T., Wang, S., Shi, Y., Yao, Y., Ge, S., Zhang, Y. and Ling, Y. (2019) Excellent Antitumor and Antimetastatic Activities Based on Novel Coumarin/Pyrazole Oxime Hybrids. European Journal of Medicinal Chemistry, 166, 470-479. https://doi.org/10.1016/j.ejmech.2019.01.070
|
[69]
|
Shen, L., Shi, P., Hao, X., Zhao, Q., Ma, J., He, Y.B. and Kang, F. (2020) Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs. Small, 16, Article ID: 2000699.
https://doi.org/10.1002/smll.202000699
|
[70]
|
Wang, S., Xiong, P., Zhang, J. and Wang, G. (2020) Recent Progress on Flexible Lithium Metal Batteries: Composite Lithium Metal Anodes and Solid-State Electrolytes. Energy Storage Materials, 29, 310-331.
https://doi.org/10.1016/j.ensm.2020.04.032
|
[71]
|
Peng, H.J., Huang, J.Q. and Zhang, Q. (2017) A Review of Flexible Lithium-Sulfur and Analogous Alkali Metal-Chalcogen Rechargeable Batteries. Chemical Society Reviews, 46, 5237-5288. https://doi.org/10.1039/C7CS00139H
|
[72]
|
Lu, L.L., Ge, J., Yang, J.N., Chen, S.M., Yao, H.B., Zhou, F. and Yu, S.H. (2016) Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Letters, 16, 4431-4437.
https://doi.org/10.1021/acs.nanolett.6b01581
|
[73]
|
Liu, Y., Lin, D., Liang, Z., Zhao, J., Yan, K. and Cui, Y. (2016) Lithium-Coated Polymeric Matrix as a Minimum Volume-Change and Dendrite-Free Lithium Metal Anode. Nature Communications, 7, Article No. 10992.
https://doi.org/10.1038/ncomms10992
|
[74]
|
Li, Q., Zhu, S. and Lu, Y. (2017) 3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries. Advanced Functional Materials, 27, Article ID: 1606422.
https://doi.org/10.1002/adfm.201606422
|
[75]
|
Wang, X., Pan, Z., Yang, J., Lyu, Z., Zhong, Y., Zhou, G., Qiu, Y., Zhang, Y., Wang, J. and Li, W. (2019) Stretchable Fiber-Shaped Lithium Metal Anode. Energy Storage Materials, 22, 179-184.
https://doi.org/10.1016/j.ensm.2019.01.013
|
[76]
|
Chen, H., Yang, Y., Boyle, D.T., Jeong, Y.K., Xu, R., de Vasconcelos, L.S., Huang, Z., Wang, H., Wang, H., Huang, W., Li, H., Wang, J., Gu, H., Matsumoto, R., Motohashi, K., Nakayama, Y., Zhao, K. and Cui, Y. (2021) Free-Standing Ultrathin Lithium Metal-Graphene Oxide Host Foils with Controllable Thickness for Lithium Batteries. Nature Energy, 6, 790-798. https://doi.org/10.1038/s41560-021-00833-6
|
[77]
|
Wang, C.Y., Zheng, Z.J., Feng, Y.Q., Ye, H., Cao, F.F. and Guo, Z.P. (2020) Topological Design of Ultrastrong MXene Paper Hosted Li Enables Ultrathin and Fully Flexible Lithium Metal Batteries. Nano Energy, 74, Article ID: 104817. https://doi.org/10.1016/j.nanoen.2020.104817
|
[78]
|
Liu, K., Kong, B., Liu, W., Sun, Y., Song, M.S., Chen, J., Liu, Y., Lin, D., Pei, A. and Cui, Y. (2018) Stretchable Lithium Metal Anode with Improved Mechanical and Electrochemical Cycling Stability. Joule, 2, 1857-1865.
https://doi.org/10.1016/j.joule.2018.06.003
|
[79]
|
Li, S., Wang, H., Cuthbert, J., Liu, T., Whitacre, J.F. and Matyjaszewski, K. (2019) A Semiliquid Lithium Metal Anode. Joule, 3, 1637-1646. https://doi.org/10.1016/j.joule.2019.05.022
|
[80]
|
Wu, W., Duan, J., Wen, J., Chen, Y., Liu, X., Huang, L., Wang, Z., Deng, S., Huang, Y. and Luo, W. (2020) A Writable Lithium Metal Ink. Science China Chemistry, 63, 1483-1489. https://doi.org/10.1007/s11426-020-9810-1
|
[81]
|
Gao, J., Chen, C., Dong, Q., Dai, J., Yao, Y., Li, T., Rundlett, A., Wang, R., Wang, C. and Hu, L. (2021) Stamping Flexible Li Alloy Anodes. Advanced Materials, 33, Article ID: 2005305. https://doi.org/10.1002/adma.202005305
|
[82]
|
Liao, K.N., et al. (2018) Developing a “Water-Defendable” and “Dendrite-Free” Lithium-Metal Anode Using a Simple and Promising GeCl4 Pretreatment Method. Advanced Materials, 30, Article ID: 1705711.
https://doi.org/10.1002/adma.201705711
|