阿托品用于近视控制的临床策略研究进展
Advances in Clinical Strategies for Atropine in Myopia Control
DOI: 10.12677/ACM.2023.1351029, PDF, HTML, XML,    国家自然科学基金支持
作者: 刘显茂, 李 鸿*:重庆医科大学附属第一医院眼科,重庆
关键词: 近视阿托品近视控制Myopia Atropine Myopia Control
摘要: 近视的患病率在全球范围内呈上升趋势。近视的并发症与巨大的经济和社会成本有关。人们认为,成年后的高度近视可以追溯到学龄期近视。因此,实施有效的近视控制措施是至关重要和紧迫的,这可能包括预防近视发病以及延缓学龄儿童近视进展。近视的机制仍不清楚。有一些证据表明布鲁赫氏膜过度扩张,可能是由于周边远视散焦引起的,这可能是导致眼球不受控制的轴向伸长的机制之一。阿托品是目前控制近视最有效的疗法。最近的临床试验表明,与高浓度制剂相比,低剂量阿托品滴眼液(如0.01%)可延缓近视进展,副作用显著减少。然而,仍有一部分患者反应不佳,其中的具体机制尚不清楚。建议的策略包括逐步增加阿托品剂量,以及将低剂量阿托品与增加户外时间相结合。这篇综述将侧重于目前对近视流行病学、病理生理学的理解,并重点介绍最近在学龄儿童中使用阿托品在近视前期和近视儿童中临床实施的治疗策略。
Abstract: The prevalence of myopia is increasing globally. Complications of myopia are associated with huge economic and social costs. It is believed that high myopia in adulthood can be traced back to school age onset myopia. Therefore, it is crucial and urgent to implement effective measures of myopia control, which may include preventing myopia onset as well as retarding myopia progression in school age children. The mechanism of myopia is still poorly understood. There are some evidences to suggest excessive expansion of Bruch’s membrane, possibly in response to peripheral hyperopic defocus, and it may be one of the mechanisms leading to the uncontrolled axial elongation of the globe. Atropine is currently the most effective therapy for myopia control. Recent clinical trials demonstrated low-dose atropine eye drops such as 0.01% resulted in retardation of myopia pro-gression, with significantly less side effects compared to higher concentration preparation. Howev-er, there remain a proportion of patients who are poor responders, in whom the optimal manage-ment remains unclear. Proposed strategies include stepwise increase of atropine dosing, and a combination of low-dose atropine with increase outdoor time. This review will focus on the current understanding of epidemiology, pathophysiology in myopia and highlight using atropine in the school-aged children, as well as the treatment strategy in clinical implementation in pre-myopic and myopic children.
文章引用:刘显茂, 李鸿. 阿托品用于近视控制的临床策略研究进展[J]. 临床医学进展, 2023, 13(5): 7369-7377. https://doi.org/10.12677/ACM.2023.1351029

1. 引言

近视是世界上最常见的眼科疾病,但它时常被人们单纯的理解为一种屈光不正,因为他们认为近视是可以通过佩戴眼镜或屈光手术来矫正的。实际上,高度近视会增加一系列严重眼部并发症的风险,这可能导致不可逆转的视力丧失。世界卫生组织(World Health Organization, WHO)最近将“高度近视”定义为−6屈光度(D)或更高,这与失明风险增加相关 [1] 。高度近视也被称为病理性近视,最有可能发生潜在的致盲性并发症,如视网膜脱离、近视脉络膜新生血管(Choroidal Neovascularization, CNV)、近视黄斑变性、黄斑凹、青光眼和白内障 [2] 。近视已经成为一个主要的公共卫生问题,因为它的患病率迅速增加,特别是在东亚,并且它与潜在的不可逆转的失明有关 [3] 。

近视早期发病是成年高度近视的一个重要危险因素 [4] 。青春期后,大多数人的近视进展逐渐稳定。亚洲学龄儿童近视的早期发病与达到屈光稳定的持续时间更长有关,在某些情况下,进展速度更快(每年大于−1 D) [5] ,这最终导致亚洲年轻人高度近视的患病率更高,有可能发展与高度近视相关的后遗症,并导致病理性近视 [6] 。因此,延缓学龄儿童近视的发病和延缓近视的进展,可能是今后减少高度近视的关键。

有强有力的证据表明,环境因素在学龄期近视的发展中起着至关重要的作用 [7] ,其中包括户外时间 [8] 、长期的高强度学习 [9] 、城市化 [7] 、近距离工作 [10] 、产前因素 [11] 和社会经济地位 [12] 。最近,据报道,户外活动和减少近距离工作的持续时间可以有效延缓近视的发病 [8] [13] 。然而,在评估的各种干预措施中,阿托品被发现是减缓近视进展的最有效干预措施之一 [14] [15] 。这篇综述将涵盖近视发病机制的最新理解、阿托品用于延缓近视进展的原理以及临床策略。

2. 学校近视流行病学

大多数人在儿童时期,特别是在校期间,都会近视;近视开始时年龄较小的儿童随后近视进展更大。通常,学龄期近视或青少年近视通常指在小学或中学早期发生近视的儿童,排除了与强烈家族遗传相关的早期高度近视形式 [7] 。与成人近视患病率相似,儿童近视患病率和发病率在不同地区和国家有所不同;据报道,在中国和台湾,7~12岁儿童的近视年发病率为8%~18% [8] [16] 。相比之下,据报道,澳大利亚12岁儿童的年发病率要低得多,为2.2% [17] 。

在过去几十年中,许多报告表明,近视和高度近视的患病率在小学生中急剧增加,特别是在东亚 [18] [19] 。例如,从1983年到2000年,7岁儿童近视的患病率从5.8%增加到21.0% [18] 。在东亚城市地区,高达80%~90%的完成中学学业的儿童现在近视,其中约五分之一的儿童患有高度近视 [3] 。人们认为,环境因素在这一趋势中起着至关重要的作用,因为农村地区学龄期近视的患病率一直很低,如蒙古农村地区,2006年报告的患病率为5.8% [20] 。

欧洲人口的估计患病率为30.6%,患病率稳步上升 [21] [22] 。在北美和澳大利亚,近视患病率也呈上升趋势。根据美国的一项综述,12~17岁学童的近视患病率从12.0% (1971年至1972年)增加到31.2% (1999年至2004年) [23] 。另一项针对西欧和北欧近视患病率的基于人群的横断面研究的荟萃分析表明,出生年份较近的年轻人近视患病率较高,其中约一半受影响,在50~79岁的可比年龄范围内,年龄标准化的近视患病率从1910~1939年出生者的17.8%增加到1940~1979年出生者的23.5% [22] 。甚至在澳大利亚,近视的患病率似乎低于欧洲和北美;据估计,在上个世纪,近视的患病率可能增加了四倍 [24] 。

3. 近视的病理生理学现状

正视的过程是在生命的第二年结束后,根据晶状体和角膜的光学特性调整眼轴的长度。在出生后的头两年,眼球球体在各个方向上大部分呈球形生长,矢状径从足月出生时的约17毫米增加到出生后第二年的约21至22毫米。这种眼部生长与巩膜体积的增加有关,因此可能伴随着新的巩膜组织的形成 [25] 。在第二年之后,眼球的进一步扩大主要发生在轴向,1 mm的轴向伸长对应于眼球的水平和垂直直径增加0.5 mm,轴向长度为24 mm [26] 。超过24 mm的轴向长度时,水平和垂直球体直径每增加1 mm,轴向伸长量增加0.2 mm或更小。轴向伸长与脉络膜变薄,相对而言巩膜变薄。脉络膜和巩膜变薄在后极部最明显,而在赤道部不明显 [27] 。轴向伸长还与后赤道区域视网膜变薄和视网膜色素上皮细胞(Retinal Pigment Epithelial Cell, RPE)密度降低有关,而黄斑区域的视网膜厚度和RPE细胞密度以及任何区域的布鲁赫氏膜(Bruch’s Membrane, BM)厚度与轴向长度无关 [28] [29] [30] 。视盘中央凹距离的轴向伸长相关增加主要是由于视盘周围定义为无BM区域的乳头旁γ区的发育和扩大 [31] [32] 。随后,在轴向伸长的眼睛中,黄斑区BM的长度不会增加,除非黄斑区BM出现缺陷 [33] 。黄斑区RPE细胞密度、视网膜厚度和BM长度的独立性是符合观察结果的,即在没有近视黄斑病变的轴向细长眼中,最佳矫正视力独立于轴向长度 [34] 。

正视的过程可能发生在具有传入、感觉部分和传出部分的反馈机制中。动物实验研究和临床观察表明,传入感觉部分可能位于眼睛赤道后区域的眼底中边缘 [35] [36] 。这一假设是基于对动物的观察,即周边散焦导致眼睛轴向伸长。根据这一假设,患有先天性黄斑瘢痕的患者,例如由于弓形虫性视网膜脉络膜炎,通常不会出现轴性延长,而患有周围视网膜破坏的眼睛,例如在激光光凝治疗早产儿视网膜病变后,会出现明显的轴性近视。相比之下,通过玻璃体内应用抗血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)药物治疗的早产儿视网膜病变患者的眼轴近视发生率较低 [37] 。对近视儿童随机分配佩戴单眼镜片或渐进式附加镜片的临床试验也支持了中周边眼底作为正视过程中感觉臂的位置的概念 [38] 。相比之下,对所提出的反馈机制的传出臂的理解仍然有限。这种反馈包括目标组织以及传入和传出臂之间的通信模式。一种信使分子被提出将信息从传入臂传递到传出臂,建议的候选药物包括多巴胺、左旋多巴等等,其可抑制兔、豚鼠或小鼠形觉剥夺近视眼闭塞眼的轴向伸长 [39] [40] [41] 。因此,玻璃体内注射阿扑吗啡作为非特异性多巴胺能激动剂,在晶状体诱导近视模型中可以导致眼部生长抑制 [42] [43] ,具体分子机制是多巴胺神经源细胞的胞体和末稍细胞膜上有D1和D2受体,阿朴吗啡为多巴胺无选择性受体激动剂,它加强视网膜多巴胺的生物效应,在形觉剥夺过程的开始阿朴吗啡局部应用可以抑制近视发生,在视觉发育的敏感期中,对已经形成的近视有减缓其发展速度的效应,剂量增加有使近视向正视转化的效应,显示了阿朴吗啡对形觉剥夺近视眼视网膜生物效应的剂量依赖性。然而,在其他动物模型中却有相反的发现 [44] ,他们认为与近视病因有关的分子是毒蕈碱拮抗剂。研究表明,哌仑西平(一种具有高毒蕈碱M1受体选择性的抗胆碱能药物)在玻璃体内应用时,抑制了豚鼠、树鼩和猴子的轴向伸长 [45] [46] [47] 。在豚鼠体内,眼内应用哌仑西平增加了金属蛋白酶组织抑制剂(Tissue inhibitor of metalloproteinase, TIMP-2)和酪氨酸羟化酶的表达 [47] 。这与临床试验结果相吻合,其中以0.01%的低浓度局部应用阿托品可减少学龄儿童近视的进展。另一个候选分子是腺苷受体拮抗剂7-甲基黄嘌呤 [48] 。

到目前为止,作为轴向伸长主要驱动因素的目标组织仍然是难以捉摸的。在许多研究中,巩膜和脉络膜被认为是近视眼扩大的主要原因 [49] [50] 。然而,巩膜作为轴向伸长的主要驱动因素,并不符合脉络膜明显变薄的解剖学发现,最明显的是后极,相对而言比巩膜变薄更明显 [21] 。如果巩膜是支配眼轴长度的主要组织,那么可以预期脉络膜间隙会变宽。另一种模型可以将BM视为主要结构,向后扩张并压迫脉络膜,最明显的是后极,其次扩张巩膜。这一假设得到了一些解剖学观察的支持:1) 在轴向拉长的眼睛中,巩膜(和脉络膜)的体积没有增大,这表明可用组织的重新排列,而没有新组织的形成;2) BM的厚度与轴向长度无关;以及3) 正视过程的目标是调整终止于感光体外段的光轴长度。最靠近感光体外节段的第一个坚固结构是BM,而巩膜通过海绵状脉络膜与感光体外段分离,其厚度另外显示出昼夜变化。最近的一项研究支持了BM作为主要驱动因素的观点,其中BM的生物力学强度与其厚度的关系是巩膜强度的50~100倍。这一假设也与观察结果相吻合,即眼底中周边的RPE细胞密度和视网膜厚度随着轴向长度的增加而减小,这可能是由于在该区域产生BM导致眼球大部分呈管状扩大所致。如果BM是轴向伸长的主要驱动因素,则产生BM作为其基膜的RPE将是目标组织。有趣的是最近对年轻豚鼠晶状体诱发近视的实验研究表明,如果玻璃体内应用两调节蛋白抗体,则会导致轴向伸长的剂量依赖性降低 [51] 。RPE具有表皮生长因子受体,两调节蛋白是表皮生长因子家族的成员。

4. 阿托品的使用

4.1. 阿托品作用机理

迄今为止,阿托品是唯一一种被证明持续有效减缓近视进展的药物 [14] [15] 。儿童近视一旦发展,其发展速度估计约为每年1 D (东亚及周边地区)和0.5 D (白种人) [5] [52] 。几年后,这些儿童中的很大一部分将达到高度近视。因此,及早干预以防止近视儿童近视进展是迫切和重要的。更高浓度的阿托品(如1%或0.5%)已被证明对延缓近视进展非常有效,但畏光副作用的高发生率(高达100%)与高辍学率(16%~58%)相关 [53] [54] 。此外,还存在潜在的长期全身或眼部副作用。此外,还描述了停用阿托品后的反弹效应,在阿托品浓度较高时尤为显著。但是研究发现0.01%阿托品在近视控制中的有效性大为提高,同时具有较低的副作用。因此,人们对低浓度阿托品用于近视控制的临床应用产生了浓厚的兴趣。

尽管已经假设视网膜和巩膜毒蕈碱受体的上调和下调会影响巩膜基质,但局部阿托品的确切机制仍不清楚 [55] [56] 。此外,阿托品抑制哺乳动物和鸟类眼睛的近视诱导 [57] [58] 。与哺乳动物的眼睛不同,鸟类的眼睛含有受烟碱受体而非毒蕈碱受体支配的横纹睫状肌 [59] 。因此,阿托品可能通过视网膜中的M1/M4受体,而不是通过调节系统,以相对较低的剂量发挥作用。另一方面,阿托品对巩膜成纤维细胞的非毒蕈碱性和直接影响也可能有助于该效应 [60] 。

4.2. 阿托品的副作用

眼部滴用阿托品的全身副作用并不常见,如口干、面部潮红、头痛、血压升高、便秘、排尿困难和中枢神经系统紊乱。阿托品滴眼液最常见的眼部副作用包括畏光、近视力模糊和局部过敏反应。其中,畏光症最为常见,其发病率与阿托品浓度呈正相关。Yen等人的研究中,所有接受1%阿托品治疗的患者都报告了畏光症,这被描述为导致一半以上受试者退出研究的主要原因 [54] 。相比之下,分别接受0.5%和0.25%阿托品的参与者中,仅有22%和7%的人报告畏光。0.1%阿托品组的参与者均无明显畏光 [5] 。0.1%和0.5%阿托品组中4.1%的儿童报告了过敏性结膜炎 [4] 。0.1%和0.5%组的近视力下降,但在26个月后完全恢复。阿托品很少诱发青光眼。发病率低至1/20,000 [61] 。一项研究报告了621名儿童接受阿托品治疗3年,均未发现高血压 [62] 。

5. 阿托品的临床实施策略

5.1. 使用前的初步评估

无论是否有阿托品治疗,应在第一次就诊时确定所有因屈光不正而就诊的儿童的屈光状态。睫状肌麻痹是临床实践工作或者研究中的金标准 [63] 。10岁儿童的调节幅度可能大于10 D [64] 。由于调节范围大,如果仅使用自动验光检查,通常会出现假性近视。短期和中期睫状肌麻痹剂包括托吡卡胺,长期睫状肌麻痹剂如阿托品可用于儿童睫状肌痉挛的屈光 [65] [66] 。睫状体麻痹后,球面等效屈光不正(Spherical Equivalent Refraction Error, SER)可分为远视、近视前和近视。远视的定义是SER > +0.5 D,近视的定义为SER ≤ −0.5 D、近视前期的定义是SER ≤ +0.5 D和>−0.5 D [67] 。

超重儿童应接受良好的眼部护理教育,包括鼓励每天约2小时的户外活动和临近工作时间 [68] [69] [70] 。建议每半年或1年定期随访一次睫状体麻痹性屈光检查,以监测近视眼屈光转移的速度,直到青春期结束。在英国,国家卫生服务局为所有16岁以下(如果是全日制教育,则为19岁)的儿童提供每年免费的视力检查和眼镜。如果出现新症状,可以更频繁地进行眼部检查。

对于近视前期儿童,据报道,小学期间发现的远视屈光度 < +0.75是随后近视发作的风险 [71] 。Fang等人报道,50名近视前儿童中有24名在睡前滴用0.025%阿托品,与对照组相比,1年后近视发作率从54%降至21% [67] 。然而,需要更大的研究和更长的随访时间来确定是否也应在所有近视前儿童中使用阿托品。同样,需要评估最佳剂量。建议根据孩子的年龄和父母的近视史,每3~6个月监测一次近视眼的变化。

5.2. 开始阿托品治疗

对于近视儿童,可以提供低浓度阿托品治疗,以减缓近视进展。开始前,应讨论治疗的目的和程序、潜在副作用、成功标准等。父母和儿童必须了解阿托品治疗可以减缓近视的进展,但不能像角膜矫形术那样改善视力。治疗过程最初预计至少为2年,之后应监测儿童,以保持低近视状态,直到青春期结束。在阿托品治疗的同时,应继续鼓励户外活动 [72] 。孩子的年龄、基线屈光误差、最近进展的任何证据以及父母的屈光误差有助于预测近视的进展程度。最好以最低浓度开始治疗,如0.01%阿托品,因为眼部副作用会小很多。给药频率为每天一次。阿托品开始使用后2~3周,常出现轻微远视移位,这可能是由于睫状体向后松弛和晶状体悬韧带变得绷紧所致。因此,记录未经治疗的基线和2~4周后阿托品基线后的屈光度是非常有用的。此后,建议每3个月进行一次睫状体麻痹屈光随访。

5.3. 阿托品治疗后的评估

在阿托品治疗期间,如果孩子有远视困难,例如在教室里看黑板或看电视,应使用适当的距离眼镜。向患者明确解释,眼镜虽然可以改善视力,但对近视控制没有临床显著影响 [73] [74] 。然而,建议孩子在近距离工作时摘下远视眼镜,因为远视眼镜可能会在近距离的工作中导致偏焦散焦,并被认为有助于近视的进一步发展 [75] [76] 。此外,使用阿托品治疗的儿童,远距眼镜会加重近模糊症状。出现近模糊症状的儿童也可以佩戴双焦点或多焦点眼镜。户外活动时建议戴帽子、光致变色或太阳镜,以防止畏光症状。在每年的复查期间,最好的临床检查是查看患者的副作用,如干眼症、过敏性结膜炎、潮红、头痛、心脏病和泌尿系统症状。眼部标准检查包括非接触轴向长度、眼底镜检查以筛查近视相关的周边视网膜变性,如lattice检查,以及眼压测量。

如果近视持续发展到每6个月近视增长≥0.5 D,这表明当前治疗剂量的疗效可能不够。替代策略包括增加阿托品的浓度,或继续使用相同浓度的阿托品并增加户外时间,或改用不同的治疗方式,如角膜矫形术。然而,更高剂量的阿托品效果更好的证据却是十分有限的 [13] [77] 。还应考虑更高的副作用发生率和可能更高的停药率。Wu等人报道了近视长期控制的逐步方法 [13] 。他们建议根据近视控制的效果逐步增加阿托品的浓度。目前,0.01%阿托品滴眼液已经被国家药监局批准用于近视的标准临床治疗方法,越来越受到近视儿童及其家长的选择。

6. 总结

总之,研究结果表明,在一定比例的近视学童中,低浓度阿托品有助于延缓近视进展。阿托品治疗目前已在一些亚洲国家纳入临床实践。然而,为了获得最佳结果,父母和孩子的接受程度很重要,不能过分强调阿托品治疗的长期依从性和依从性。关于高度近视后果的教育,以及在每次就诊时向儿童和家长分享近视控制的效果,是在治疗过程中保持他们积极性的关键策略。从低浓度开始的阿托品个体化治疗方案是可行的。除了阿托品之外,良好的眼部护理习惯、增加户外活动时间和限制近距离工作负荷也不应被忽视。尽管低剂量阿托品治疗在近视控制方面很有前景,但仍存在治疗策略和目标人群等不确定性。

基金项目

国家自然科学基金面上项目(编号:81974131)。

NOTES

*通讯作者。

参考文献

[1] Alvarez-Peregrina, C., Villa-Collar, C., Martinez-Perez, C., et al. (2022) Social Media Impact of Myopia Research. In-ternational Journal of Environmental Research and Public Health, 19, Article No. 7270.
https://doi.org/10.3390/ijerph19127270
[2] Ohno-Matsui, K., Lai, T.Y., Lai, C.C., et al. (2016) Updates of Path-ologic Myopia. Progress in Retinal and Eye Research, 52, 156-187.
https://doi.org/10.1016/j.preteyeres.2015.12.001
[3] Morgan, I.G., Ohno-Matsui, K. and Saw, S.M. (2012) Myo-pia. The Lancet, 379, 1739-1748.
https://doi.org/10.1016/S0140-6736(12)60272-4
[4] Gwiazda, J., Hyman, L., Dong, L.M., et al. (2007) Factors Associated with High Myopia after 7 Years of Follow-Up in the Correction of Myopia Evaluation Trial (COMET) Co-hort. Ophthalmic Epidemiology, 14, 230-237.
https://doi.org/10.1080/01658100701486459
[5] Shih, Y.F., Chen, C.H., Chou, A.C., et al. (1999) Effects of Different Concentrations of Atropine on Controlling Myopia in Myopic Children. Journal of Ocular Pharmacology and Therapeutics, 15, 85-90.
https://doi.org/10.1089/jop.1999.15.85
[6] Wong, Y.L. and Saw, S.M. (2016) Epidemiology of Pathologic Myo-pia in Asia and Worldwide. The Asia-Pacific Journal of Ophthalmology (Phila), 5, 394-402.
https://doi.org/10.1097/APO.0000000000000234
[7] Morgan, I. and Rose, K. (2005) How Genetic Is School Myopia? Progress in Retinal and Eye Research, 24, 1-38.
https://doi.org/10.1016/j.preteyeres.2004.06.004
[8] Wu, P.C., Tsai, C.L., Wu, H.L., et al. (2013) Outdoor Activ-ity during Class Recess Reduces Myopia Onset and Progression in School Children. Ophthalmology, 120, 1080-1085.
https://doi.org/10.1016/j.ophtha.2012.11.009
[9] Dirani, M., Shekar, S.N. and Baird, P.N. (2008) The Role of Educational Attainment in Refraction: The Genes in Myopia (GEM) Twin Study. Investigative Ophthalmology & Visual Science, 49, 534-538.
https://doi.org/10.1167/iovs.07-1123
[10] Saw, S.M., Chua, W.H., Hong, C.Y., et al. (2002) Nearwork in Ear-ly-Onset Myopia. Investigative Ophthalmology & Visual Science, 43, 332-339.
[11] Rahi, J.S., Cumberland, P.M. and Peckham, C.S. (2011) Myopia over the Lifecourse: Prevalence and Early Life Influences in the 1958 British Birth Cohort. Ophthalmology, 118, 797-804.
https://doi.org/10.1016/j.ophtha.2010.09.025
[12] Lim, H.T., Yoon, J.S., Hwang, S.S., et al. (2012) Prevalence and Associated Sociodemographic Factors of Myopia in Korean Children: The 2005 Third Korea National Health and Nutrition Examination Survey (KNHANES III). Japanese Journal of Ophthalmology, 56, 76-81.
https://doi.org/10.1007/s10384-011-0090-7
[13] Wu, P.C., Yang, Y.H. and Fang, P.C. (2011) The Long-Term Results of Using Low-Concentration Atropine Eye Drops for Controlling Myopia Progression in School-children. Journal of Ocular Pharmacology and Therapeutics, 27, 461- 466.
https://doi.org/10.1089/jop.2011.0027
[14] Walline, J.J., Lindsley, K., Vedula, S.S., et al. (2011) Interventions to Slow Progression of Myopia in Children. Cochrane Database of Systematic Reviews, No. 12, CD004916.
https://doi.org/10.1002/14651858.CD004916.pub3
[15] Huang, J., Wen, D., Wang, Q., et al. (2016) Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-Analysis. Ophthalmology, 123, 697-708.
https://doi.org/10.1016/j.ophtha.2015.11.010
[16] He, M., Xiang, F., Zeng, Y., et al. (2015) Effect of Time Spent Outdoors at School on the Development of Myopia among Children in China: A Randomized Clinical Trial. JAMA, 314, 1142-1148.
https://doi.org/10.1001/jama.2015.10803
[17] French, A.N., Morgan, I.G., Burlutsky, G., et al. (2013) Prevalence and 5- to 6-Year Incidence and Progression of Myopia and Hyperopia in Australian Schoolchildren. Ophthalmology, 120, 1482-1491.
https://doi.org/10.1016/j.ophtha.2012.12.018
[18] Lin, L.L., Shih, Y.F., Hsiao, C.K., et al. (2004) Prevalence of Myopia in Taiwanese Schoolchildren: 1983 to 2000. Annals of the Academy of Medicine of Singapore, 33, 27-33.
[19] Lam, C.S., Lam, C.H., Cheng, S.C., et al. (2012) Prevalence of Myopia among Hong Kong Chinese Schoolchildren: Changes over Two Decades. Ophthalmic and Physiological Optics, 32, 17-24.
https://doi.org/10.1111/j.1475-1313.2011.00886.x
[20] Morgan, A., Young, R., Narankhand, B., et al. (2006) Prevalence Rate of Myopia in Schoolchildren in Rural Mongolia. Optometry and Vision Science, 83, 53-56.
https://doi.org/10.1097/01.opx.0000195567.88641.af
[21] Williams, K.M., Verhoeven, V.J., Cumberland, P., et al. (2015) Prevalence of Refractive Error in Europe: The European Eye Epidemiology (E(3)) Consortium. European Journal of Epidemiology, 30, 305-315.
https://doi.org/10.1007/s10654-015-0010-0
[22] Williams, K.M., Bertelsen, G., Cumberland, P., et al. (2015) In-creasing Prevalence of Myopia in Europe and the Impact of Education. Ophthalmology, 122, 1489-1497.
https://doi.org/10.1016/j.ophtha.2015.03.018
[23] Vitale, S., Sperduto, R.D. and Ferris, F.L. (2009) Increased Prevalence of Myopia in the United States between 1971-1972 and 1999-2004. Archives of Ophthalmology, 127, 1632-1639.
https://doi.org/10.1001/archophthalmol.2009.303
[24] McCarty, C.A. and Taylor, H.R. (2000) Myopia and Vision 2020. American Journal of Ophthalmology, 129, 525-527.
https://doi.org/10.1016/S0002-9394(99)00444-4
[25] Jonas, J.B., Holbach, L. and Panda-Jonas, S. (2014) Scleral Cross Section Area and Volume and Axial Length. PLOS ONE, 9, e93551.
https://doi.org/10.1371/journal.pone.0093551
[26] Jonas, J.B., Ohno-Matsui, K., Holbach, L., et al. (2017) Asso-ciation between Axial Length and Horizontal and Vertical Globe Diameters. Graefe’s Archive for Clinical and Experi-mental Ophthalmology, 255, 237-242.
https://doi.org/10.1007/s00417-016-3439-2
[27] Wei, W.B., Xu, L., Jonas, J.B., et al. (2013) Subfoveal Choroidal Thickness: The Beijing Eye Study. Ophthalmology, 120, 175-180.
https://doi.org/10.1016/j.ophtha.2012.07.048
[28] Jonas, J.B., Ohno-Matsui, K., Holbach, L., et al. (2017) Retinal Pigment Epithelium Cell Density in Relationship to Axial Length in Human Eyes. Acta Ophthalmologica, 95, e22-e28.
https://doi.org/10.1111/aos.13188
[29] Jonas, J.B., Holbach, L. and Panda-Jonas, S. (2014) Bruch’s Membrane Thickness in High Myopia. Acta Ophthalmologica, 92, e470-e474.
https://doi.org/10.1111/aos.12372
[30] Bai, H.X., Mao, Y., Shen, L., et al. (2017) Bruch’s Membrane Thickness in Relationship to Axial Length. PLOS ONE, 12, e0182080.
https://doi.org/10.1371/journal.pone.0182080
[31] Jonas, R.A., Wang, Y.X., Yang, H., et al. (2015) Optic Disc-Fovea Distance, Axial Length and Parapapillary Zones. The Beijing Eye Study 2011. PLOS ONE, 10, e0138701.
https://doi.org/10.1371/journal.pone.0138701
[32] Jonas, J.B., Wang, Y.X., Zhang, Q., et al. (2016) Parapapillary Gamma Zone and Axial Elongation-Associated Optic Disc Rotation: The Beijing Eye Study. Investigative Ophthalmology & Visual Science, 57, 396-402.
https://doi.org/10.1167/iovs.15-18263
[33] Jonas, J.B., Wang, Y.X., Zhang, Q., et al. (2015) Macular Bruch’s Membrane Length and Axial Length. The Beijing Eye Study. PLOS ONE, 10, e0136833.
https://doi.org/10.1371/journal.pone.0136833
[34] Yin, G., Wang, Y.X., Zheng, Z.Y., et al. (2012) Ocular Axial Length and Its Associations in Chinese: The Beijing Eye Study. PLOS ONE, 7, e43172.
https://doi.org/10.1371/journal.pone.0043172
[35] Smith, E.L., Hung, L.F., Huang, J., et al. (2010) Effects of Op-tical Defocus on Refractive Development in Monkeys: Evidence for Local, Regionally Selective Mechanisms. Investiga-tive Ophthalmology & Visual Science, 51, 3864-3873.
https://doi.org/10.1167/iovs.09-4969
[36] Huang, J., Hung, L.F. and Smith, E.L. (2011) Effects of Foveal Ablation on the Pattern of Peripheral Refractive Errors in Normal and Form-Deprived Infant Rhesus Monkeys (Macaca mulatta). Investigative Ophthalmology & Visual Science, 52, 6428-6434.
https://doi.org/10.1167/iovs.10-6757
[37] Harder, B.C., Schlichtenbrede, F.C., von Baltz, S., et al. (2013) Intravitreal Bevacizumab for Retinopathy of Prematurity: Refrac-tive Error Results. American Journal of Ophthalmology, 155, 1119-1124.e1111.
https://doi.org/10.1016/j.ajo.2013.01.014
[38] Berntsen, D.A., Barr, C.D., Mutti, D.O., et al. (2013) Peripheral Defocus and Myopia Progression in Myopic Children Randomly Assigned to Wear Single Vision and Progressive Addi-tion Lenses. Investigative Ophthalmology & Visual Science, 54, 5761-5770.
https://doi.org/10.1167/iovs.13-11904
[39] Feldkaemper, M. and Schaeffel, F. (2013) An Updated View on the Role of Dopamine in Myopia. Experimental Eye Research, 114, 106-119.
https://doi.org/10.1016/j.exer.2013.02.007
[40] Gao, Q., Liu, Q., Ma, P., et al. (2006) Effects of Direct Intravitreal Dopamine Injections on the Development of Lid-Suture Induced Myopia in Rabbits. Graefe’s Archive for Clinical and Experimental Ophthalmology, 244, 1329- 1335.
https://doi.org/10.1007/s00417-006-0254-1
[41] Mao, J. and Liu, S. (2017) Different Roles of Retinal Dopamine in Albino Guinea Pig Myopia. Neuroscience Letters, 639, 94-97.
https://doi.org/10.1016/j.neulet.2016.12.061
[42] Yan, T., Xiong, W., Huang, F., et al. (2015) Daily Injection but Not Continuous Infusion of Apomorphine Inhibits Form-Deprivation Myopia in Mice. Investigative Ophthalmology & Visual Science, 56, 2475-2485.
https://doi.org/10.1167/iovs.13-12361
[43] Nickla, D.L., Totonelly, K. and Dhillon, B. (2010) Dopaminergic Ago-nists That Result in Ocular Growth Inhibition Also Elicit Transient Increases in Choroidal Thickness in Chicks. Experi-mental Eye Research, 91, 715-720.
https://doi.org/10.1016/j.exer.2010.08.021
[44] Dong, F., Zhi, Z., Pan, M., et al. (2011) Inhibition of Experimental Myopia by a Dopamine Agonist: Different Effectiveness between Form Deprivation and Hyperopic Defocus in Guinea Pigs. Molecular Vision, 17, 2824-2834.
[45] McBrien, N.A., Jobling, A.I., Truong, H.T., et al. (2009) Expression of Muscarinic Receptor Subtypes in Tree Shrew Ocular Tissues and Their Regulation during the Development of Myopia. Molecular Vision, 15, 464-475.
[46] Ostrin, L.A., Frishman, L.J. and Glasser, A. (2004) Effects of Pirenzepine on Pupil Size and Accommodation in Rhesus Monkeys. Investigative Ophthalmology & Visual Science, 45, 3620-3628.
https://doi.org/10.1167/iovs.04-0258
[47] Qian, L., Zhao, H., Li, X., et al. (2015) Pirenzepine Inhibits Myopia in Guinea Pig Model by Regulating the Balance of MMP-2 and TIMP-2 Expression and Increased Tyrosine Hydroxylase Levels. Cell Biochemistry and Biophysics, 71, 1373-1378.
https://doi.org/10.1007/s12013-014-0359-9
[48] Hung, L.F., Arumugam, B., Ostrin, L., et al. (2018) The Adenosine Receptor Antagonist, 7-Methylxanthine, Alters Emme-tropizing Responses in Infant Macaques. Investigative Ophthalmology & Visual Science, 59, 472-486.
https://doi.org/10.1167/iovs.17-22337
[49] Nickla, D.L. and Wallman, J. (2010) The Multifunctional Choroid. Progress in Retinal and Eye Research, 29, 144-168.
https://doi.org/10.1016/j.preteyeres.2009.12.002
[50] McBrien, N.A. and Gentle, A. (2003) Role of the Sclera in the Development and Pathological Complications of Myopia. Progress in Retinal and Eye Research, 22, 307-338.
https://doi.org/10.1016/S1350-9462(02)00063-0
[51] Jiang, W.J., Song, H.X., Li, S.Y., et al. (2017) Amphiregulin Antibody and Reduction of Axial Elongation in Experimental Myopia. EBioMedicine, 17, 134-144.
https://doi.org/10.1016/j.ebiom.2017.02.021
[52] Clark, T.Y. and Clark, R.A. (2015) Atropine 0.01% Eyedrops Significantly Reduce the Progression of Childhood Myopia. Journal of Ocular Pharmacology and Therapeutics, 31, 541-545.
https://doi.org/10.1089/jop.2015.0043
[53] Bedrossian, R.H. (1979) The Effect of Atropine on Myopia. Ophthalmology, 86, 713-719.
https://doi.org/10.1016/S0161-6420(79)35455-0
[54] Yen, M.Y., Liu, J.H., Kao, S.C., et al. (1989) Comparison of the Effect of Atropine and Cyclopentolate on Myopia. Annals of Ophthalmology and Visual Sciences, 21, 180-182, 187.
[55] Barathi, V.A. and Beuerman, R.W. (2011) Molecular Mechanisms of Muscarinic Receptors in Mouse Scleral Fibroblasts: Prior to and after Induction of Experimental Myopia with Atropine Treatment. Molecular Vision, 17, 680-692.
[56] Barathi, V.A., Weon, S.R. and Beuerman, R.W. (2009) Expression of Muscarinic Receptors in Human and Mouse Sclera and Their Role in the Regulation of Scleral Fibroblasts Proliferation. Molecular Vision, 15, 1277-1293.
[57] Tigges, M., Iuvone, P.M., Fernandes, A., et al. (1999) Effects of Muscarinic Cholinergic Receptor Antagonists on Postnatal Eye Growth of Rhesus Monkeys. Optometry and Vision Science, 76, 397-407.
https://doi.org/10.1097/00006324-199906000-00020
[58] Schmid, K.L. and Wildsoet, C.F. (2004) Inhibitory Ef-fects of Apomorphine and Atropine and Their Combination on Myopia in Chicks. Optometry and Vision Science, 81, 137-147.
https://doi.org/10.1097/00006324-200402000-00012
[59] McBrien, N.A., Stell, W.K. and Carr, B. (2013) How Does Atropine Exert Its Anti-Myopia Effects? Ophthalmic and Physiological Optics, 33, 373-378.
https://doi.org/10.1111/opo.12052
[60] Lind, G.J., Chew, S.J., Marzani, D., et al. (1998) Muscarinic Acetylcholine Receptor Antagonists Inhibit Chick Scleral Chondrocytes. Investigative Ophthalmology & Visual Science, 39, 2217-2231.
[61] Pandit, R.J. and Taylor, R. (2000) Mydriasis and Glaucoma: Exploding the Myth. A Systematic Re-view. Diabetic Medicine, 17, 693-699.
https://doi.org/10.1046/j.1464-5491.2000.00368.x
[62] Wu, T.E., Yang, C.C. and Chen, H.S. (2012) Does Atropine Use Increase Intraocular Pressure in Myopic Children? Optometry and Vi-sion Science, 89, E161-E167.
https://doi.org/10.1097/OPX.0b013e31823ac4c1
[63] Dhiman, R., Rakheja, V., Gupta, V., et al. (2022) Current Concepts in the Management of Childhood Myopia. Indian Journal of Ophthalmology, 70, 2800-2815.
https://doi.org/10.4103/ijo.IJO_2098_21
[64] Sterner, B., Gellerstedt, M. and Sjöström, A. (2004) The Amplitude of Accommodation in 6-10-Year-Old Children—Not as Good as Expected! Ophthalmic and Physiologi-cal Optics, 24, 246-251.
https://doi.org/10.1111/j.1475-1313.2004.00201.x
[65] Manny, R.E., Hussein, M., Scheiman, M., et al. (2001) Tropicamide (1%): An Effective Cycloplegic Agent for Myopic Children. Investigative Ophthalmology & Visual Science, 42, 1728-1735.
[66] Lan, W., Zhao, F., Lin, L., et al. (2013) Refractive Errors in 3-6 Year-Old Chinese Children: A Very Low Prevalence of Myopia? PLOS ONE, 8, e78003.
https://doi.org/10.1371/journal.pone.0078003
[67] Fang, P.C., Chung, M.Y., Yu, H.J., et al. (2010) Prevention of Myopia Onset with 0.025% Atropine in Premyopic Children. Journal of Ocular Pharmacology and Therapeutics, 26, 341-345.
https://doi.org/10.1089/jop.2009.0135
[68] Ip, J.M., Saw, S.M., Rose, K.A., et al. (2008) Role of Near Work in Myopia: Findings in a Sample of Australian School Children. Investigative Ophthalmology & Visual Science, 49, 2903-2910.
https://doi.org/10.1167/iovs.07-0804
[69] Jones, L.A., Sinnott, L.T., Mutti, D.O., et al. (2007) Parental History of Myopia, Sports and Outdoor Activities, and Future Myopia. Investigative Ophthalmology & Visual Science, 48, 3524-3532.
https://doi.org/10.1167/iovs.06-1118
[70] Rose, K.A., Morgan, I.G., Smith, W., et al. (2008) Myopia, Lifestyle, and Schooling in Students of Chinese Ethnicity in Singapore and Sydney. Archives of Ophthalmology, 126, 527-530.
https://doi.org/10.1001/archopht.126.4.527
[71] Zadnik, K., Sinnott, L.T., Cotter, S.A., et al. (2015) Pre-diction of Juvenile-Onset Myopia. JAMA Ophthalmology, 133, 683-689.
https://doi.org/10.1001/jamaophthalmol.2015.0471
[72] Wu, P.C., Chen, C.T., Lin, K.K., et al. (2018) Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology, 125, 1239-1250.
https://doi.org/10.1016/j.ophtha.2017.12.011
[73] Cooper, J., Schulman, E. and Jamal, N. (2012) Current Status on the Development and Treatment of Myopia. Optometry, 83, 179-199.
[74] Li, S.M., Ji, Y.Z., Wu, S.S., et al. (2011) Multifocal versus Single Vision Lenses Intervention to Slow Progression of Myopia in School-Age Children: A Me-ta-Analysis. Survey of Ophthalmology, 56, 451-460.
https://doi.org/10.1016/j.survophthal.2011.06.002
[75] Hung, L.F., Crawford, M.L. and Smith, E.L. (1995) Spec-tacle Lenses Alter Eye Growth and the Refractive Status of Young Monkeys. Nature Medicine, 1, 761-765.
https://doi.org/10.1038/nm0895-761
[76] Smith, E.L. and Hung, L.F. (1999) The Role of Optical Defocus in Reg-ulating Refractive Development in Infant Monkeys. Vision Research, 39, 1415-1435.
https://doi.org/10.1016/S0042-6989(98)00229-6
[77] Chia, A., Lu, Q.S. and Tan, D. (2016) Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: Myopia Control with Atropine 0.01% Eyedrops. Ophthalmology, 123, 391-399.
https://doi.org/10.1016/j.ophtha.2015.07.004