[1]
|
Riess, A.G., Filippenko, A.V., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499
|
[2]
|
Bahall, N., Ostriker, J.P., Perlmutter, S. and Steinhardt, P.J. (1999) The Cosmic Triangle: Revealing the State of the Universe. Science, 284, 1481-1488. https://doi.org/10.1126/science.284.5419.1481
|
[3]
|
Perlmutter, S., Aldering, G., Gold-haber, G., et al. (1999) Measurements of Ω and λ from 42 High-Redshift Supernova. The Astrophysical Journal, 517, 565-586. https://doi.org/10.1086/307221
|
[4]
|
Nishizawa, A., Taruya, A. and Kawamura, S. (2010) Cosmological Test of Gravity with Polarizations of Stochastic Gravitational Waves around 0.1-1 Hz. Physical Review D, 81, Article ID: 104043.
https://doi.org/10.1103/PhysRevD.81.104043
|
[5]
|
Komatsu, E., Smith, K.M., et al. (2011) Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. The Astrophysical Journal Supple-ment Series, 192, Article No. 18.
https://doi.org/10.1088/0067-0049/192/2/18
|
[6]
|
Ade, P.A.R, Aghanim, N., Amaud, M., et al. (2014) Planck 2013 Results. I. Overview of Products and Scientific Results. Astronomy & Astrophysics, 57l, Article No. A1.
|
[7]
|
Blake, C. and Wall, J. (2002) A Velocity Dipole in the Distribution of Radio Galaxies. Nature, 416, 150-152.
https://doi.org/10.1038/416150a
|
[8]
|
Marinoni, C., Bel, J. and Buzzi, A. (2012) The Scale of Cosmic Isotropy. Journal of Cosmology and Astroparticle Physics, 10, Article No. 036. https://doi.org/10.1088/1475-7516/2012/10/036
|
[9]
|
Appleby, S. and Shafieloo, A. (2014) Testing Isotropy in the Local Universe. Journal of Cosmology and Astroparticle Physics, 10, Article No. 070. https://doi.org/10.1088/1475-7516/2014/10/070
|
[10]
|
Pandey, B. and Sarkar, S. (2015) Testing homogeneity in the Sloan Digital Sky Survey Data Release Twelve with Shannon entropy. Monthly Notices of the Royal Astronomical Socie-ty, 454, 2647-2656.
https://doi.org/10.1093/mnras/stv2166
|
[11]
|
Webb, J.K. et al. (1999) A Search for Time Variation of the Fine Structure Constant. Physical Review Letters, 82, 884-887. https://doi.org/10.1103/PhysRevLett.82.884
|
[12]
|
Wei, H. (2009) Varying Alpha Driven by the Dirac-Born-Infeld Scalar Field. Physics Letters B, 682, 98-104.
https://doi.org/10.1016/j.physletb.2009.10.086
|
[13]
|
Barrow, J.D. (2010) Varying Alpha. Annals of Physics, 19, 202-210.
|
[14]
|
Wei, H., Zou, X.-B., Li, H.-Y. and Xue, D.-Z. (2017) Cosmological Constant, Fine Structure Constant and beyond. The European Physical Journal C, 77, Article No. 14. https://doi.org/10.1140/epjc/s10052-016-4581-z
|
[15]
|
Larson, D., Dunkley, J., Hinshaw, G., et al. (2011) Sev-en-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters. The Astrophysical Journal Supplement Series, 192, Article No. 16. https://doi.org/10.1088/0067-0049/192/2/16
|
[16]
|
Bennett, C.L., Larson, D., Weiland, J.L., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. The Astrophysical Journal Supplement Series, 208, Article No. 20.
https://doi.org/10.1088/0067-0049/208/2/20
|
[17]
|
Hutsemékers, D., Cabanac, R., Lamy, H. and Sluse, D. (2005) Mapping Extreme-Scale Alignments of Quasar Polarization Vectors. Astronomy & Astrophysics, 441, 915-930. https://doi.org/10.1051/0004-6361:20053337
|
[18]
|
Bonvin, C., Durrer, R. and Kunz, M. (2006) Dipole of the Lu-minosity Distance: A Direct Measure of H(z). Physical Review Letters, 96, Article ID: 191302. https://doi.org/10.1103/PhysRevLett.96.191302
|
[19]
|
Singal, A.K. (2015) A Large Anisotropy in the Sky Distribu-tion of 3crr Quasars and Other Radio Galaxies. Astrophysics and Space Science, 357, Article No. 152. https://doi.org/10.1007/s10509-015-2388-2
|
[20]
|
Bengaly, C.A.P., Maartens, R. and Santos, M.G.(2018) Probing the Cosmological Principle in the Counts of Radio Galaxies at Different Frequencies. Journal of Cosmology and Astro-particle Physics, 1804, Article No. 031.
https://doi.org/10.1088/1475-7516/2018/04/031
|
[21]
|
Balázs, L.G., et al. (2015) A Giant Ring-Like Structure at 0.78 < z < 0.86 Displayed by GRBs. Monthly Notices of the Royal Astronomical Society, 452, 2236-2246. https://doi.org/10.1093/mnras/stv1421
|
[22]
|
Clowes, R.G., et al. (2013) A Structure in the Early Universe at z ∼ 1.3 That Exceeds the Homogeneity Scale of the R-W Concordance Cosmology. Monthly Notices of the Royal Astronomical Society, 429, 2910-2916.
https://doi.org/10.1093/mnras/sts497
|
[23]
|
Ade, P.A.R., Aghanim, N., Arnaud, M., et al. (2016) Planck 2015 Re-sults XIII. Cosmological Parameters. Astronomy & Astrophysics, 594, Article No. A13.
|
[24]
|
Albrecht, A. and Stein-bardt, P.J. (1982) Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Physical Review Letters, 48, 1220-1223. https://doi.org/10.1103/PhysRevLett.48.1220
|
[25]
|
俞允强. 物理宇宙学讲义[M]. 北京: 北京大学出版社, 2002.
|
[26]
|
Penzias, A.A. and Wilson, R.W. (1965) A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journal, 142, 419-421. https://doi.org/10.1086/148307
|
[27]
|
Enqvist, K. (2008) Lemaitre-Tolman-Bondi Model and Accelerating Expansion. General Relativity and Gravitation, 40, 451-466. https://doi.org/10.1007/s10714-007-0553-9
|
[28]
|
Caldwell, R.R. and Stebbins, A. (2008) A Test of the Copernican Principle. Physical Review Letters, 100, Article ID: 191302. https://doi.org/10.1103/PhysRevLett.100.191302
|
[29]
|
Li, S.-L., Feng, X.-H., Wei, H. and Lü, H. (2017) Godel Universe from String Theory. The European Physical Journal C, 77, Article No. 289. https://doi.org/10.1140/epjc/s10052-017-4856-z
|
[30]
|
Batakis, N.A. (1995) Bianchi-Type String Cosmology. Phys-ics Letters B, 353, 39-45.
https://doi.org/10.1016/0370-2693(95)00582-6
|
[31]
|
Dicke, R.H., Peebles, P.J., Roll, P.G. and Wilkinson, D.T. (1965) Cosmic Black-Body Radiation. The Astrophysical Journal, 142, 414-419. https://doi.org/10.1086/148306
|
[32]
|
Cruz, M., Vielva, P., Martínez-González, E. and Barreiro, R.B. (2011) Anom-alous Variance in the WMAP Data and Galactic Foreground Residuals. Monthly Notices of the Royal Astronomical Society, 412, 2383-2390.
https://doi.org/10.1111/j.1365-2966.2010.18067.x
|
[33]
|
Ade, P.A.R., et al. (2014) Planck 2013 Results. XXIII. Isotropy and Statistics of the CMB. Astronomy & Astrophysics, 571, Article No. A23.
|
[34]
|
Hansen, F.K. et al. (2009) Power Asymmetry in Cosmic Microwave Background Fluctuations from Full Sky toSub-Degree Scales: Is the Universe Isotropic? The Astrophysical Journal, 704, 1448-1458.
https://doi.org/10.1088/0004-637X/704/2/1448
|
[35]
|
Axelsson, M., et al. (2013) Directional Dependence of ΛCDM Cosmological Parameters. The Astrophysical Journal Letters, 773, Article No. L3. https://doi.org/10.1088/2041-8205/773/1/L3
|
[36]
|
Mukherjee, S. and Wandelt, B.D. (2018) Making Maps of Cos-mological Parameters. Journal of Cosmology and Astroparticle Physics, 2018, Article No. 042. https://doi.org/10.1088/1475-7516/2018/01/042
|
[37]
|
Fosalba, P. and Gaztañaga, E. (2021) Explaining Cosmologi-cal Anisotropy: Evidence for Causal Horizons from CMB Data. Monthly Notices of the Royal Astronomical Society, 504, 5840-5862. https://doi.org/10.1093/mnras/stab1193
|
[38]
|
Sandage, A.R. (1970) Cosmology: A Search for Two Numbers. Physics Today, 23, 34-41.
https://doi.org/10.1063/1.3021960
|
[39]
|
Krishnan, C., Colgáin, E.Ó., Sheikh-Jabbari, M.M. and Yang, T. (2021) Running Hubble Tension and a H0 Diagnostic. Physical Review D, 103, Article ID: 103509. https://doi.org/10.1103/PhysRevD.103.103509
|
[40]
|
McClure, M.L. and Dyer, C.C. (2007) Anisotropy in the Hub-ble Constant as Observed in the HST Extragalactic Distance Scale Key Project Results. New Astronomy, 12, 533-543. https://doi.org/10.1016/j.newast.2007.03.005
|
[41]
|
Migkas, K., et al. (2020) Probing Cosmic Isotropy with a New X-Ray Galaxy Cluster Sample through the LX-T Scaling Relation. Astronomy & Astrophysics, 636, Article No. A15. https://doi.org/10.1051/0004-6361/201936602
|
[42]
|
Migkas, K., et al. (2021) Cosmological Implications of the An-isotropy of Ten Galaxy Cluster Scaling Relations. Astronomy & Astrophysics, 649, Article No. A151. https://doi.org/10.1051/0004-6361/202140296
|
[43]
|
Scolnic, D.M., et al. (2018) The Complete Light-Curve Sample of Spectroscopically Confirmed SNe IA From Pan-STARRS1 and Cosmological Constraints From the Combined Pan-theon Sample. The Astrophysical Journal, 859, Article No. 101. https://doi.org/10.3847/1538-4357/aab9bb
|
[44]
|
Krishnan, C., Mohayaee, R., Colgáin, E.Ó., Sheikh-Jabbari, M.M. and Yin, L. (2022) Hints of FLRW Breakdown from Supernovae. Physical Review D, 105, Article ID: 063514. https://doi.org/10.1103/PhysRevD.105.063514
|
[45]
|
Finelli, F., Gruppuso, A., Paci, F. and Starobinsky, A.A. (2012) Searching for Hidden Mirror Symmetries in CMB Fluctuations from WMAP 7 Year Maps. Journal of Cosmolo-gy and Astroparticle Physics, 2012, Article No. 049.
https://doi.org/10.1088/1475-7516/2012/07/049
|
[46]
|
Aluri, P.K. and Jain, P. (2012) Parity Asymmetry in the CMB Temperature Power Spectrum. Monthly Notices of the Royal Astronomical Society, 419, 3378-3392. https://doi.org/10.1111/j.1365-2966.2011.19981.x
|
[47]
|
Ade, P.A.R., et al. (2016) Planck 2015 Results. XVI. Isot-ropy and Statistics of the CMB. Astronomy & Astrophysics, 594, Article No. A16.
|
[48]
|
Gruppuso, A., et al. (2011) New Constraints on Parity Symmetry from a Re-Analysis of the WMAP-7 Low-Resolution Power Spectra. Monthly No-tices of the Royal Astronomical Society, 411, 1445-1452.
https://doi.org/10.1111/j.1365-2966.2010.17773.x
|
[49]
|
Ade, P.A.R., et al. (2020) Planck 2018 Results. VII. Isot-ropy and Statistics of the CMB. Astronomy & Astrophysics, 641, Article No. A7.
|
[50]
|
Philcox, O.H.E. (2022) Probing Parity-Violation with the Four-Point Correlation Function of BOSS Galaxies. Physical Review D, 106, Article ID: 063501. https://doi.org/10.1103/PhysRevD.106.063501
|
[51]
|
Yadav, J.K., Bagla, J.S. and Khandai, N. (2010) Fractal Dimension as a Measure of the Scale of Homogeneity. Monthly Notices of the Royal Astronomical Society, 405, 2009-2015.
https://doi.org/10.1111/j.1365-2966.2010.16612.x
|
[52]
|
Geller, M.J. and Huchra, J.P. (1989) Mapping the Universe. Science, 246, 897-903.
https://doi.org/10.1126/science.246.4932.897
|
[53]
|
Gott III, J.R., Jurić, M., Schlegel, D., Hoyle, F., Vogeley, M., Tegmark, M., Bahcall, N. and Brinkmann, J. (2005) A Map of the Universe. The Astrophysical Journal, 624, 463-484. https://doi.org/10.1086/428890
|
[54]
|
Webster, A. (1982) The Clustering of Quasars from an Objective-Prism Sur-vey. Monthly Notices of the Royal Astronomical Society, 199, 683-705. https://doi.org/10.1093/mnras/199.3.683
|
[55]
|
Crampton, D., Cowley, A.P. and Hartwick, F.D.A. (1987) The Space Distribution of Faint Quasars from the CFHT Survey. The Astrophysical Journal, 314, 129-144. https://doi.org/10.1086/165045
|
[56]
|
Clowes, R.G. and Campusano, L.E. (1991) A 100-200 Mpc Group of Quasars. Monthly Notices of the Royal Astronomical Society, 249, 218-226. https://doi.org/10.1093/mnras/249.2.218
|
[57]
|
Mészáros, P. (2006) Gamma-Ray Bursts. Reports on Progress in Physics, 69, 2259-2321.
https://doi.org/10.1088/0034-4885/69/8/R01
|
[58]
|
Horváth, I., Hakkila, J. and Bagoly, Z. (2014) Possible Structure in the GRB Sky Distribution at Redshift Two. Astronomy & Astrophysics, 561, Article No. L12. https://doi.org/10.1051/0004-6361/201323020
|
[59]
|
Etherington, I.M.H. (2007) Republication of: LX. On the Defi-nition of Distance in General Relativity. General Relativity and Gravitation, 39, 1055-1067. https://doi.org/10.1007/s10714-007-0447-x
|
[60]
|
Renzi, F., Hogg, N.B. and Giaré, W. (2022) The Resilience of the Etherington-Hubble Relation. Monthly Notices of the Royal Astronomical Society, 513, 4004-4014. https://doi.org/10.1093/mnras/stac1030
|
[61]
|
Zumalacárregui, M., García-Bellido, J. and Ruiz-Lapuente, P. (2012) Tension in the Void: Cosmic Rulers Strain Inhomogeneous Cosmologies. Journal of Cosmology and Astroparticle Physics, 2012, Article No. 009.
https://doi.org/10.1088/1475-7516/2012/10/009
|
[62]
|
Kenworthy, W.D., Scolnic, D. and Riess, A. (2019) The Lo-cal Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant. The As-trophysical Journal, 875, Article No. 145.
https://doi.org/10.3847/1538-4357/ab0ebf
|
[63]
|
Camarena, D., Marra, V., Sakr, Z. and Clarkson, C. (2022) A Void in the Hubble Tension? The End of the Line for the Hubble Bubble. Classical and Quantum Gravity, 39, Article ID: 184001. https://doi.org/10.1088/1361-6382/ac8635
|
[64]
|
Camarena, D., Marra, V., Sakr, Z. and Clarkson, C. (2022) The Copernican Principle in Light of the Latest Cosmological Data. Monthly Notices of the Royal Astronomical Society, 509, 1291-1302.
https://doi.org/10.1093/mnras/stab3077
|
[65]
|
Clarkson, C., Bassett, B. and Lu, T.H.-C. (2008) A General Test of the Copernican Principle. Physical Review Letters, 101, Article ID: 011301. https://doi.org/10.1103/PhysRevLett.101.011301
|
[66]
|
Buchert, T. and Carfora, M. (2008) On the Curvature of the Present-Day Universe. Classical and Quantum Gravity, 25, Article ID: 195001. https://doi.org/10.1088/0264-9381/25/19/195001
|
[67]
|
Goodman, J. (1995) Geocentrism Reexamined. Physical Re-view D, 52, 1821-1827.
https://doi.org/10.1103/PhysRevD.52.1821
|
[68]
|
Heavens, A.F., Jimenez, R. and Maartens, R. (2011) Testing Ho-mogeneity with the Fossil Record of Galaxies. Journal of Cosmology and Astroparticle Physics, 2011, Article No. 035. https://doi.org/10.1088/1475-7516/2011/09/035
|
[69]
|
Phillips, M.M. (1993) The Absolute Magnitudes of Type IA Supernovae. Astrophysical Journal Letters, 413, L105-L108.
https://doi.org/10.1086/186970
|
[70]
|
Hillebrandt, W. and Niemeyer, J.C. (200) Type IA Supernova Explosion Models. Annual Review of Astronomy and Astrophysics, 38, 191-230. https://doi.org/10.1146/annurev.astro.38.1.191
|
[71]
|
Riess, A.G, Press, W.H. and Kirshner, R.P. (1995) Using Type IA Supernova Light Curve Shapes to Measure the Hubble Constant. Astrophysical Journal Letters, 438, L17-L20. https://doi.org/10.1086/187704
|
[72]
|
Guy, J., Astier, P., Nobili, S., Regnault, N. and Pain, R. (2005) SALT: A Spectral Adaptive Light Curve Template for Type IA Supernovae. Astronomy & Astrophysics, 443, 781-791. https://doi.org/10.1051/0004-6361:20053025
|
[73]
|
Campanelli, L., Cea, P., Fogli, G.L. and Marrone, A. (2011) Testing the Isotropy of the Universe with Type IA SUPErnovae. Physical Review D, 83, Article ID: 103503. https://doi.org/10.1103/PhysRevD.83.103503
|
[74]
|
Li, X., Lin, H.-N., Wang, S. and Chang, Z. (2013) ΛCDM Model with a Scalar Perturbation vs. Preferred Direction of the Universe. European Physical Journal C, 73, Article No. 2653. https://doi.org/10.1140/epjc/s10052-013-2653-x
|
[75]
|
Aluri, P.K., Panda, S., Sharma, M. and Thakur, S. (2013) Anisotropic Universe with Anisotropic Sources. Journal of Cosmology and Astroparticle Physics, 2013, Article No. 003. https://doi.org/10.1088/1475-7516/2013/12/003
|
[76]
|
Chang, Z., Li, X., Lin, H.-N. and Wang, S. (2014) Constraining Anisotropy of the Universe from Different Groups of Type-IA Supernovae. The European Physical Jour-nal C, 74, Article No. 2821.
https://doi.org/10.1140/epjc/s10052-014-2821-7
|
[77]
|
Wang, Y.-Y. and Wang, F.Y. (2018) Testing the Isotropy of the Universe with Type IA Supernovae in a Model-Independent Way. Monthly Notices of the Royal Astronomical Society, 474, 3516-3522.
https://doi.org/10.1093/mnras/stx2982
|
[78]
|
Deng, H.-K. and Wei, H. (2018) Testing the Cosmic Anisotropy with Supernovae Data: Hemisphere Comparison and Dipole Fitting. Physical Review D, 97, Article ID: 123515. https://doi.org/10.1103/PhysRevD.97.123515
|
[79]
|
Antoniou, I. and Perivolaropoulos, L. (2010) Searching for a Cosmological Preferred Axis: Union2 Data Analysis and Comparison with Other Probes. Journal of Cosmology and Astroparticle Physics, 2010, Article No. 012.
https://doi.org/10.1088/1475-7516/2010/12/012
|
[80]
|
Cai, R.-G. and Tuo, Z.-L. (2012) Direction Dependence of the Deceleration Parameter. Journal of Cosmology and Astroparticle Physics, 2012, Article No. 004. https://doi.org/10.1088/1475-7516/2012/02/004
|
[81]
|
Cai, R.-G., Ma, Y.-Z., Tang, B. and Tuo, Z.-L. (2013) Con-straining the Anisotropic Expansion of Universe. Physical Review D, 87, Article ID: 123522. https://doi.org/10.1103/PhysRevD.87.123522
|
[82]
|
Zhao, W., Wu, P.X. and Zhang, Y. (2013) Anisotropy of Cos-mic Acceleration. International Journal of Modern Physics D, 22, Article ID: 1350060. https://doi.org/10.1142/S0218271813500600
|
[83]
|
Yang, X.F., Wan, F.Y. and Chu, Z. (2014) Searching for a Pre-ferred Direction with Union2.1 Data. Monthly Notices of the Royal Astronomical Society, 437, 1840-1846. https://doi.org/10.1093/mnras/stt2015
|
[84]
|
Chang, Z. and Lin, H.-N. (2015) Comparison between Hemisphere Comparison Method and Dipole-Fitting Method in Tracing the Anisotropic Expansion of the Universe Use the Union2 Data Set. Monthly Notices of the Royal Astronomical Society, 446, 2952-2958. https://doi.org/10.1093/mnras/stu2349
|
[85]
|
Lin, H.-N., Wang, S., Chang, Z. and Li, X. (2016) Testing the Isotropy of the Universe by Using the JLA Compilation of Type IA Supernovae. Monthly Notices of the Royal Astronomical Soci-ety, 456, 1881-1885.
https://doi.org/10.1093/mnras/stv2804
|
[86]
|
Lin, H.-N., Li, X. and Chang, Z. (2016) The Significance of Aniso-tropic Signals Hiding in the Type IA Supernovae. Monthly Notices of the Royal Astronomical Society, 460, 617-626. https://doi.org/10.1093/mnras/stw995
|
[87]
|
Chang, Z., Lin, H.-N., Sang, Y. and Wang, S. (2018) A Tomographic Test of Cosmological Principle Using the JLA Compilation of Type IA Supernovae. Monthly Notices of the Royal Astro-nomical Society, 478, 3633-3639.
https://doi.org/10.1093/mnras/sty1120
|
[88]
|
Javanmardi, B., Porciani, C., Kroupa, P. and Pflamm-Altenburg, J. (2015) Probing the Isotropy of Cosmic Acceleration Traced by Type IA Supernovae. The Astrophysical Journal, 810, Article No. 47.
https://doi.org/10.1088/0004-637X/810/1/47
|
[89]
|
Bengaly, C.A.P., Bernui, A. and Alcaniz, J.S. (2015) Probing Cosmological Isotropy with Type IA Supernovae. The Astrophysical Journal, 808, Article No. 39. https://doi.org/10.1088/0004-637X/808/1/39
|
[90]
|
Andrade, U., Bengaly, C.A.P., Alcaniz, J.S. and Santos, B. (2018) Isotropy of Low Redshift Type IA Supernovae: A Bayesian Analysis. Physical Review D, 97, Article ID: 083518. https://doi.org/10.1103/PhysRevD.97.083518
|
[91]
|
Deng, H.-K. and Wei, H. (2018) Null Signal for the Cosmic Anisotropy in the Pantheon Supernovae Data. The European Physical Journal C, 78, Article No. 755. https://doi.org/10.1140/epjc/s10052-018-6159-4
|
[92]
|
Wang, J.S. and Wang, F.Y. (2014) Probing the Anisotropic Expansion from Supernovae and GRBs in a Model-Independent Way. Monthly Notices of the Royal Astronomical Society, 443, 1680-1687.
https://doi.org/10.1093/mnras/stu1279
|
[93]
|
Schwarz, D.J. and Weinhorst, B. (2007) (An)Isotropy of the Hubble Diagram: Comparing Hemispheres. Astronomy & Astrophysics, 474, 717-729. https://doi.org/10.1051/0004-6361:20077998
|
[94]
|
Mariano, A. and Perivolaropoulos, L. (2012) Is there Correlation between Fine Structure and Dark Energy Cosmic Dipoles? Physical Review D, 86, Article ID: 083517. https://doi.org/10.1103/PhysRevD.86.083517
|
[95]
|
Zhao, D., Zhou, Y. and Chang, Z. (2019) Anisotropy of the Universe via the Pantheon Supernovae Sample Revisited. Monthly Notices of the Royal Astronomical Society, 486, 5679-5689. https://doi.org/10.1093/mnras/stz1259
|
[96]
|
Colin, J., Mohayaee, R., Sarkar, S. and Shafieloo, A. (2011) Probing the Anisotropic Local Universe and beyond with SNe IA Data. Monthly Notices of the Royal Astronomical Soci-ety, 414, 264-271.
https://doi.org/10.1111/j.1365-2966.2011.18402.x
|
[97]
|
Hu, J.P. Wang, Y.Y. and Wang, F.Y. (2020) Testing Cos-mic Anisotropy with Pantheon Sample and Quasars at High Redshifts. Astronomy & Astrophysics, 643, Article No. A93. https://doi.org/10.1051/0004-6361/202038541
|
[98]
|
Broutl, D., Scolnic, D., et al. (2022) The Pantheon+ Analysis: Cosmological Constraints. The Astrophysical Journal, 938, Article No. 110.
|
[99]
|
Kaiser, N. (1986) Evolution and Clustering of Rich Clusters. Monthly Notices of the Royal Astronomical Society, 222, 323-345. https://doi.org/10.1093/mnras/222.2.323
|
[100]
|
Giodini, S., et al. (2013) Scaling Relations for Galaxy Clusters: Properties and Evolution. Space Science Reviews, 177, 247-282. https://doi.org/10.1007/s11214-013-9994-5
|
[101]
|
Migkas, K. and Reiprich, T.H. (2018) Anisotropy of the Galaxy Cluster X-Ray Luminosity-Temperature Relation. Astronomy & Astrophysics, 611, Article No. A50. https://doi.org/10.1051/0004-6361/201731222
|
[102]
|
Amati, L., et al. (2018) The THESEUS Space Mission Concept: Science Case Design and Expected Performances. Advances in Space Research, 62, 191-244.
|
[103]
|
Wang, F.Y., Dai, Z.G. and Liang, E.W. (2015) Gamma-Ray Burst Cosmology. ArXiv: 1504.00735.
|
[104]
|
Sokolov, V.V., et al. (2018) The Core Collapse Supernovae, Gamma-Ray Bursts and SN 1987A.
|
[105]
|
Řípa, J. and Shafieloo, A. (2019) Update on Test-ing the Isotropy of the Properties of Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 486, 3027-3040.
|
[106]
|
Andrade, U., Carlos, A.P.B., Alcaniz, J.S. and Capozziello, S. (2019) Revisiting the Statistical Isotro-py of GRB Sky Distribution. Monthly Notices of the Royal Astronomical Society, Preprint.
|
[107]
|
Hartmann, D. and Blu-menthal, G.R. (1989) Angular Clustering Properties of Gamma-Ray Bursts and Quantitative Constraints on Their Dis-tances. The Astrophysical Journal, 342, 521-526. https://doi.org/10.1086/167611
|
[108]
|
Briggs, M.S., et al. (1996) BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts. The Astrophysical Journal, 459, 40-43. https://doi.org/10.1086/176867
|
[109]
|
Tegmark, M., Hartmann, D.H., Briggs, M.S. and Meegan, C.A. (1996) The Angular Power Spectrum of BATSE 3B Gamma-Ray Bursts. The Astrophysical Journal, 468, 214-224. https://doi.org/10.1086/177684
|
[110]
|
Tarnopolski, M. (2017) Testing the Anisotropy in the Angular Distribution of Fermi/GBM Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 472, 4819-4831. https://doi.org/10.1093/mnras/stx2356
|
[111]
|
Řípa, J. and Shafieloo, A. (2017) Testing the Isotropic Universe Using the Gamma-Ray Burst Data of Fermi/GBM. The Astrophysical Journal, 851, Article No. 15. https://doi.org/10.3847/1538-4357/aa9708
|
[112]
|
Vavrek, R., Balazs, L.G., Meszaros, A., Horvath, I. and Bagoly, Z. (2008) Testing the Randomness in the Sky-Distribution of Gamma-Ray Bursts. Monthly Notices of the Royal Astronom-ical Society, 391, 1741-1748.
https://doi.org/10.1111/j.1365-2966.2008.13635.x
|
[113]
|
Gerasim, R.V., Orlov, V.V. and Raikov, A.A. (2015) Study of the Large-Scale Distribution of Gamma-Ray Burst Sources by the Method of Pairwise Distances. Astrophysics, 58, 204-215. https://doi.org/10.1007/s10511-015-9376-7
|
[114]
|
Shirokov, S.I., Raikov, A.A. and Baryshev, Y.V. (2017) Spatial Distribution of Gamma-Ray Burst Sources. Astrophysics, 60, 484-496. https://doi.org/10.1007/s10511-017-9500-y
|
[115]
|
Balázs, L.G., Meszáros, A. and Horváth, I. (1998) Anisotropy of the Sky Distribution of Gamma-Ray Bursts. Astronomy & Astrophysics, 339, 1-6.
|
[116]
|
Cline, D.B., Matthey, C. and Otwinowski, S. (1999) Study of Very Short Gamma-Ray Bursts. The Astrophysical Journal, 527, 827-834. https://doi.org/10.1086/308094
|
[117]
|
Magliocchetti, M., Ghirlanda, G. and Celotti, A. (2003) Evidence for Anisot-ropy in the Distribution of Short-Lived Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 343, 255-258.
https://doi.org/10.1046/j.1365-8711.2003.06657.x
|
[118]
|
Mészáros, A., Bagoly, Z., Horváth, I., Balázs, L.G. and Vavrek, R. (2000) A Remarkable Angular Distribution of the Intermediate Subclass of Gamma-Ray Bursts. The Astro-physical Journal, 539, 98-101. https://doi.org/10.1086/309193
|
[119]
|
Litvin, V.F., Matveev, S.A., Mamedov, S.V. and Orlov, V.V. (2001) Anisotropy in the Sky Distribution of Short Gamma-Ray Bursts. Astronomy Letters, 27, 416-420. https://doi.org/10.1134/1.1381609
|
[120]
|
Labini, F.S., Tekhanovich, D. and Baryshev, Y.V. (2014) Spatial Density Fluctuations and Selection Effects in Galaxy Redshift Surveys. Journal of Cosmology and Astroparticle Physics, 2014, Article No. 035.
https://doi.org/10.1088/1475-7516/2014/07/035
|
[121]
|
Risaliti, G. and Lusso, E. (2019) Cosmological Constraints from the Hubble Diagram of Quasars at High Redshifts. Nature Astronomy, 3, 272-277. https://doi.org/10.1038/s41550-018-0657-z
|
[122]
|
Zavarygin, E.O. and Webb, J.K. (2019) A Search for Cosmologi-cal Anisotropy Using the Lyman Alpha Forest from SDSS Quasar Spectra. Monthly Notices of the Royal Astronomical Society, 489, 3966-3980.
https://doi.org/10.1093/mnras/stz2416
|
[123]
|
Cai, R.-G., Cao, Z., Guo, Z.-K., Wang, S.-J. and Yang, T. (2017) The Gravitational-Wave Physics. National Science Review, 4, 687-706. https://doi.org/10.1093/nsr/nwx029
|
[124]
|
Cai, R.-G., Liu, T.-B., Liu, X.-W., Wang, S.-J. and Yang, T. (2018) Probing Cosmic Anisotropy with Gravitational Waves as Standard Sirens. Physical Review D, 97, Article ID: 103005. https://doi.org/10.1103/PhysRevD.97.103005
|
[125]
|
Cruz, M., Tucci, M., Martínez-González, E. and Vielva, P. (2006) The Non-Gaussian Cold Spot in Wilkinson Microwave Anisotropy Probe: Significance, Morphology and Fore-ground Contribution. Monthly Notices of the Royal Astronomical Society, 369, 57-67. https://doi.org/10.1111/j.1365-2966.2006.10312.x
|
[126]
|
Zhang, R. and Huterer, D. (2010) Disks in the Sky: A Re-assessment of the WMAP “Cold Spot”. Astroparticle Physics, 33, 69-74. https://doi.org/10.1016/j.astropartphys.2009.11.005
|
[127]
|
Hanson, D. and Lewis, A. (2009) Estimators for CMB Statistical Anisotropy. Physical Review D, 80, Article ID: 063004. https://doi.org/10.1103/PhysRevD.80.063004
|
[128]
|
Das, S., Mitra, S., Rotti, A., Pant, N. and Souradeep, T. (2016) Statistical Isotropy Violation in WMAPCMB Maps Resulting from Non-Circular Beams. Astronomy & Astrophysics, 591, Article No. A97.
https://doi.org/10.1051/0004-6361/201424164
|