[1]
|
Inoue, T., Fujishima, A., Konishi, S. and Honda, K. (1979) Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature, 277, 637-638. https://doi.org/10.1038/277637a0
|
[2]
|
孙登荣, 李朝晖. 金属有机框架材料(MOFs)在光催化有机合成中的应用[J]. 中国材料进展, 2017, 36(10): 756-764.
|
[3]
|
王子一. 金属卟啉高效助催化剂提升半导体TiO2光催化还原CO2性能的研究[D]: [硕士学位论文]. 天津: 天津大学, 2020.
|
[4]
|
肖娟定, 李丹丹, 江海龙. 金属有机框架材料在光催化中的应用[J]. 中国科学:化学, 2018, 48(9): 1058-1075.
|
[5]
|
Wang, D.K., Huang, R.K., Liu, W.J., Sun, D.G. and Li, Z.H. (2014) Fe-Based MOFs for Photocatalytic CO2 Reduction: Role of Coordination Unsaturated Sites and Dual Excitation Pathways. ACS Catalysis, 4, 4254-4260.
https://doi.org/10.1021/cs501169t
|
[6]
|
Shi, L.,Wang, T., Zhang, H.B., Chang, K. and Ye, J.H. (2015) Elec-trostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal-Organic Framework for Enhanced Photocatalytic CO2 Reduction. Advanced Functional Materials, 25, 5360-5367. https://doi.org/10.1002/adfm.201502253
|
[7]
|
Cardoso, J., Stulp, S., Brito, J.F., et al. (2018) MOFs Based on ZIF-8 Deposited on TiO2 Nanotubes Increase the Surface Adsorption of CO2 and Its Photoelectrocatalytic Reduction to Alcohols in Aqueous Media. Applied Catalysis B: Environmental, 225, 563-573. https://doi.org/10.1016/j.apcatb.2017.12.013
|
[8]
|
Ryu, U.J., Kim, S.J., Lim, H.K., et al. (2017) Synergistic Interaction of Re Complex and Amine Functionalized Multiple Ligands in Metal-Organic Frameworks for Conver-sion of Carbon Dioxide. Scientific Reports, 7, Article No. 612.
https://doi.org/10.1038/s41598-017-00574-1
|
[9]
|
Qin, J., Wang, S. and Wang, X. (2017) Visible-Light Re-duction CO2 with Dodecahedral Zeolitic Imidazolate Framework ZIF-67 as an Efficient Co-Catalyst. Applied Ca-talysis B: Environmental, 209, 476-482.
https://doi.org/10.1016/j.apcatb.2017.03.018
|
[10]
|
Dong, G. and Zhang, L. (2011) Porous Structure Dependent Photoreactivity of Graphitic Carbon Nitride under Visible Light. Journal of Materials Chemistry, 22, 1160-1166. https://doi.org/10.1039/C1JM14312C
|
[11]
|
李阳. 基于g-C3N4复合光催化剂的制备及高效光催化CO2还原[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2021.
|
[12]
|
张麒, 殷金越, 田志远, 等. C3N4/BiVO4/Cu2O复合材料用于纯水中CO2光还原为甲醇[J]. 分子科学学报, 2021, 37(4): 335-342.
|
[13]
|
Zhang, R.Y., Huang, Z., Li, C.J., Zuo, Y.S. and Zhou, Y. (2019) Monolithic g-C3N4/Reduced Graphene Oxide Aerogel with in situ Embedding of Pd Nanoparticles for Hydrogenation of CO2 to CH4. Applied Surface Science, 475, 953-960.
https://doi.org/10.1016/j.apsusc.2019.01.050
|
[14]
|
Wang, K., Fu, J.L. and Zheng, Y. (2019) Insights into Photocatalytic CO2 Reduction on C3N4: Strategy of Simultaneous B, K Co-Doping and Enhancement by N Vacancies. Applied Catalysis B: Environmental, 254, 270-282.
https://doi.org/10.1016/j.apcatb.2019.05.002
|
[15]
|
Bhosale, R., Jain, S., Vinod, C.P., Kumar, S. and Ogale, S. (2019) Direct Z-Scheme g-C3N4/FeWO4 Nanocomposite for Eehanced and Selective Photocatalytic CO2 Reduction under Visible Light. ACS Applied Materials & Interfaces, 11, 6174-6183.
|
[16]
|
Kuriki, R., Ishitani, O. and Maeda, K. (2016) Unique Solvent Effects on Visible-Light CO2 Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts. ACS Applied Materials & Interfaces, 8, 6011-6018.
https://doi.org/10.1021/acsami.5b11836
|
[17]
|
Zhao, X., Fan, Y., Zhang, W., et al. (2020) Nanoengineering Construction of Cu2O Nanowire Arrays Encapsulated with g-C3N4 as 3D Spatial Reticulation All-Solid-State Direct Zscheme Photocatalysts for Photocatalytic Reduction of Carbon Dioxide. ACS Catalysis, 10, 6367-6376. https://doi.org/10.1021/acscatal.0c01033
|
[18]
|
Fu, J., Zhu, B., Jiang, C., et al. (2017) Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity. Small, 13, Article ID: 1603938. https://doi.org/10.1002/smll.201603938
|
[19]
|
Sun, Z., Yang, Z., Liu, H., Wang, H.Q. and Wu, Z.B. (2014) Visible-Light CO2 Photocatalytic Reduction Performance of Ball-Flower-Like Bi2WO6 Synthesized without Organic Precursor: Effect of Post-Calcination and Water Vapor. Applied Surface Science, 315, 360-367. https://doi.org/10.1016/j.apsusc.2014.07.153
|
[20]
|
任广敏. Bi2MO6(M = W, Mo)/ACSs的制备及其光催化CO2还原性能研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2020.
|
[21]
|
候婉君, 肖姗姗, 陈悦, 周香港, 王立艳, 盖广清. Bi2WO6光催化剂的研究进展[J]. 建材技术与应用, 2021(4): 28-31.
|
[22]
|
Cheng, H., Huang, B., Liu, Y., et al. (2012) An Anion Exchange Approach to Bi2WO6 Hollow Microspheres with Efficient Visible Light Photocatalytic Reduction of CO2 to Methanol. Chemical Communications, 48, 9729-9731.
https://doi.org/10.1039/c2cc35289c
|
[23]
|
Ye, L.Q., Jin, X.L., Liu, C., et al. (2016) Thickness-Ultrathin and Bismuth-Rich Strategies for BiOBr to Enhance Photoreduction of CO2 into Solar Fuels. Applied Catalysis B: Envi-ronmental, 187, 281-290.
https://doi.org/10.1016/j.apcatb.2016.01.044
|
[24]
|
Huang, H., Tu, S., Zeng, C., et al. (2017) Macroscopic Polarization Enhancement Promoting Photo-and Piezoelectric-Induced Charge Separation and Molecular Oxygen Activation. Angewandte Chemie International Edition, 56, 11860-11864. https://doi.org/10.1002/anie.201706549
|
[25]
|
Yu, S.X., Zhang, Y.H., Dong, F., et al. (2018) Readily Achieving Concentration-Tunable Oxygen Vacancies in Bi2O2CO3: Triple-Functional Role for Efficient Visible-Light Photo-catalytic Redox Performance. Applied Catalysis B: Environmental, 226, 441-450. https://doi.org/10.1016/j.apcatb.2017.12.074
|
[26]
|
Chen, F., Huang, H.W., Ye, L.Q., et al. (2018) Thick-ness-Dependent Facet Junction Control of Layered BiOIO3 Single Crystals for Highly Efficient CO2 Photoreduction. Advanced Functional Materials, 28, Article ID: 1804284.
https://doi.org/10.1002/adfm.201804284
|
[27]
|
Li, J., Cai, L.J., Shang, J., Yu, Y. and Zhang, L.Z. (2016) Giant Enhancement of Internal Electric Field Boosting Bulk Charge Separation for Photocatalysis. Advanced Materials, 28, 4059-4064. https://doi.org/10.1002/adma.201600301
|
[28]
|
Liu, Y.Y., Huang, B.B., Dai, Y., et al. (2009) Se-lective Ethanol Formation from Photocatalytic Reduction of Carbon Dioxide in Water with BiVO4 Photocatalyst. Catalysis Communications, 11, 210-213.
https://doi.org/10.1016/j.catcom.2009.10.010
|
[29]
|
Yamashita, H., Kamada, N., He, H., et a1. (1994) Reduc-tion of CO2 with H2O on TiO2 (100) and TiO2 (110) Single Crystals under UV-Irradiation. Chemistry Letters, 23, 855-858. https://doi.org/10.1246/cl.1994.855
|
[30]
|
许民. 碳载二氧化钛复合光催化材料的制备及其能源转换应用[D]: [硕士学位论文]. 武汉: 华中科技大学, 2015.
|
[31]
|
Ishitani, O., Inoue, C., Suzuki, Y. and Ibusuki, T. (1993) Photocatalytic Reduction of Carbon Dioxide to Methane and Acetic Acid by All Aqueous Suspension of Metal-deposited TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 72, 269-271. https://doi.org/10.1016/1010-6030(93)80023-3
|
[32]
|
Hirano, K., Inoue, K. and Yatsu, T. (1992) Photocata-lysed Reduction CO2 in Aqueous TiO2 Suspension Mixed with Copper Powder. Journal of Photochemistry and Photobiology A: Chemistry, 64, 255-258.
https://doi.org/10.1016/1010-6030(92)85112-8
|
[33]
|
Anop, M., Yamashita, H., Ichihashi, Y. and Ehara, S. (1995) Photocatalytic Reduction of CO2 with H2O on Various Titanium Oxide Catalysts. Journal of Electroanalytical Chemistry, 396, 21-26.
https://doi.org/10.1016/0022-0728(95)04141-A
|
[34]
|
Feng, X., Sloppy, J.D., LaTempa, T.J., et al. (2011) Synthesis and Deposition of Ultrafine Pt Nanoparticles within High Aspect Ratio TiO2 Nanotube Arrays: Application to the Photocatalytic Reduction of Carbon Dioxide. Journal of Materials Chemistry, 21, 13429-13433. https://doi.org/10.1039/c1jm12717a
|
[35]
|
Aguirre, M.E., Zhou, R., Eugene, A.J., Guzman, M.I. and Grela, M.A. (2017) Cu2O/TiO2 Heterostructures for CO2 Reduction through a Direct Z-Scheme: Protecting Cu2O from Photo-corrosion. Applied Catalysis B: Environmental, 217, 485-493. https://doi.org/10.1016/j.apcatb.2017.05.058
|
[36]
|
Li, H.H., Li, C.X., Han, L.J., Li, C.S. and Zhang, S.J. (2016) Photocatalytic Reduction of CO2 with H2O on CuO/TiO2 Catalysts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 420-426.
https://doi.org/10.1080/15567036.2011.598910
|
[37]
|
Yan, Y.B., Yu, Y.L., Cao, C., et al. (2016) Enhanced Photocatalytic Activity for TiO2-Cu/C with Regulation and Matching of Energy Levels by Carbon and Copper for Photoreduction of CO2 into CH4. CrystEngComm, 18, 2956- 2964. https://doi.org/10.1039/C6CE00117C
|
[38]
|
Truong, Q.D., Liu, J.Y., Chung, C.C. and Ling, Y.C. (2012) Pho-tocatalytic Reduction of CO2 on FeTiO3/TiO2 Photocatalyst. Catalysis Communications, 19, 85-89. https://doi.org/10.1016/j.catcom.2011.12.025
|
[39]
|
Liu, J.H., Niu, Y.H., He, X., Qi, J.Y. and Li, X. (2016) Photocatalytic Reduction of CO2 Using TiO2-Graphene Nanocomposites. Journal of Nanomaterials, 2016, Article ID: 6012896. https://doi.org/10.1155/2016/6012896
|
[40]
|
王育文. Bi2S3 QDs和碳量子点修饰{001}TiO2及其光催化还原CO2为甲醇的研究[D]: [硕士学位论文]. 天津: 天津大学, 2016.
|
[41]
|
Liang, Y.T., Vijayan, B.K., Lyandres, O., Gray, K.A. and Hersam, M.C. (2012) Effect of Dimensionality on the Photocatalytic Behavior of Carbon-Titania Nanosheet Composites: Charge Transfer at Nanomaterial Interfaces. The Journal of Physical Chemistry Letters, 3, 1760-1765. https://doi.org/10.1021/jz300491s
|
[42]
|
He, Z.Q., Tang, J.T., Shen, J., Chen, J.M. and Song, S. (2016) Enhancement of Photocatalytic Reduction of CO2 to CH4 over TiO2 Nanosheets by Mod-ifying with Sulfuric Acid. Applied Surface Science, 364, 416-427.
https://doi.org/10.1016/j.apsusc.2015.12.163
|