[1]
|
Wong, M.C.S., Jiang, J.Y., Liang, M., et al. (2017) Global Temporal Patterns of Pancreatic Cancer and Association with Socioeconomic Development. Scientific Reports, 7, Article No. 3165.
https://doi.org/10.1038/s41598-017-02997-2
|
[2]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
|
[3]
|
Rahib, L., Smith, B.D., Aizenberg, R., et al. (2014) Projecting Cancer In-cidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Can-cer Research, 74, 2913-2921.
https://doi.org/10.1158/0008-5472.CAN-14-0155
|
[4]
|
Zheng, R., Zhang, S., Zeng, H., et al. (2022) Cancer Inci-dence and Mortality in China, 2016. Journal of the National Cancer Center, 2, 1-9. https://doi.org/10.1016/j.jncc.2022.02.002
|
[5]
|
Neoptolemos, J.P., Kleeff, J., Michl, P., et al. (2018) Therapeutic Developments in Pancreatic Cancer: Current and Future Perspectives. Nature Reviews Gastroenterology & Hepatology, 15, 333-348.
https://doi.org/10.1038/s41575-018-0005-x
|
[6]
|
Tempero, M.A. (2019) NCCN Guidelines Updates: Pancreatic Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 17, 603-605.
|
[7]
|
McGuigan, A., Kelly, P., Turkington, R.C., et al. (2018) Pancreatic Cancer: A Review of Clinical Diagnosis, Epidemiology, Treatment and Out-comes. World Journal of Gastroenterology, 24, 4846-4861.
https://doi.org/10.3748/wjg.v24.i43.4846
|
[8]
|
Siegel, R.L., Miller, K.D. and Jemal, A. (2019) Cancer Statistics, 2019. CA: A Cancer Journal for Clinicians, 69, 7-34.
https://doi.org/10.3322/caac.21551
|
[9]
|
Rupaimoole, R. and Slack, F.J. (2017) MicroRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nature Reviews Drug Discovery, 16, 203-222. https://doi.org/10.1038/nrd.2016.246
|
[10]
|
Toden, S., Zumwalt, T.J. and Goel, A. (2021) Non-Coding RNAs and Potential Therapeutic Targeting in Cancer. Biochimica et Biophysica Acta Reviews on Cancer, 1875, Article ID: 188491. https://doi.org/10.1016/j.bbcan.2020.188491
|
[11]
|
Slack, F.J. and Chinnaiyan, A.M. (2019) The Role of Non-Coding RNAs in Oncology. Cell, 179, 1033-1055.
https://doi.org/10.1016/j.cell.2019.10.017
|
[12]
|
Shang, Q., Yang, Z., Jia, R., et al. (2019) The Novel Roles of circRNAs in Human Cancer. Molecular Cancer, 18, Article No. 6. https://doi.org/10.1186/s12943-018-0934-6
|
[13]
|
Chen, S., Chen, C., Hu, Y., et al. (2021) The Diverse Roles of Circular RNAs in Pancreatic Cancer. Pharmacology & Therapeutics, 226, Article ID: 107869. https://doi.org/10.1016/j.pharmthera.2021.107869
|
[14]
|
Kristensen, L.S. andersen, M.S., Stagsted, L.V.W., et al. (2019) The Biogenesis, Biology and Characterization of Circular RNAs. Nature Reviews Genetics, 20, 675-691. https://doi.org/10.1038/s41576-019-0158-7
|
[15]
|
Jeck, W.R. and Sharpless, N.E. (2014) Detecting and Character-izing Circular RNAs. Nature Biotechnology, 32, 453-461. https://doi.org/10.1038/nbt.2890
|
[16]
|
Sanger, H.L., Klotz, G., Riesner, D., et al. (1976) Viroids Are Single-Stranded Covalently Closed Circular RNA Molecules Existing as Highly Base-Paired Rod-Like Structures. Proceedings of the National Academy of Sciences of the United States of Amer-ica, 73, 3852-3856. https://doi.org/10.1073/pnas.73.11.3852
|
[17]
|
Cocquerelle, C., Mascrez, B., Hétuin, D., et al. (1993) Mis-Splicing Yields Circular RNA Molecules. FASEB Journal: Official Publication of the Federation of Ameri-can Societies for Experimental Biology, 7, 155-160.
https://doi.org/10.1096/fasebj.7.1.7678559
|
[18]
|
Zhou, W.Y., Cai, Z.R., Liu, J., et al. (2020) Circular RNA: Metab-olism, Functions and Interactions with Proteins. Molecular Cancer, 19, Article No. 172. https://doi.org/10.1186/s12943-020-01286-3
|
[19]
|
Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., et al. (2014) circRNA Biogenesis Competes with pre-mRNA Splicing. Molecular Cell, 56, 55-66. https://doi.org/10.1016/j.molcel.2014.08.019
|
[20]
|
Zhang, X.O., Wang, H.B., Zhang, Y., et al. (2014) Complemen-tary Sequence-Mediated Exon Circularization. Cell, 159, 134-147. https://doi.org/10.1016/j.cell.2014.09.001
|
[21]
|
Liang, D. and Wilusz, J.E. (2014) Short Intronic Repeat Sequences Facilitate Circular RNA Production. Genes & Development, 28, 2233-2247. https://doi.org/10.1101/gad.251926.114
|
[22]
|
Conn, S.J., Pillman, K.A., Toubia, J., et al. (2015) The RNA Binding Protein Quaking Regulates Formation of circRNAs. Cell, 160, 1125-1134. https://doi.org/10.1016/j.cell.2015.02.014
|
[23]
|
Panda, A.C. (2018) Circular RNAs Act as miRNA Sponges. Ad-vances in Experimental Medicine and Biology, 1087, 67-79. https://doi.org/10.1007/978-981-13-1426-1_6
|
[24]
|
Hansen, T.B., Jensen, T.I., Clausen, B.H., et al. (2013) Natural RNA Circles Function as Efficient microRNA Sponges. Nature, 495, 384-388. https://doi.org/10.1038/nature11993
|
[25]
|
Li, Z., Huang, C., Bao, C., et al. (2015) Exon-Intron Circular RNAs Reg-ulate Transcription in the Nucleus. Nature Structural & Molecular Biology, 22, 256-264. https://doi.org/10.1038/nsmb.2959
|
[26]
|
Du, W.W., Yang, W., Liu, E., et al. (2016) Foxo3 Circular RNA Retards Cell Cycle Progression via Forming Ternary Complexes with p21 and CDK2. Nucleic Acids Research, 44, 2846-2858. https://doi.org/10.1093/nar/gkw027
|
[27]
|
Tatomer, D.C. and Wilusz, J.E. (2017) An Unchartered Journey for Ri-bosomes: Circumnavigating Circular RNAs to Produce Proteins. Molecular Cell, 66, 1-2. https://doi.org/10.1016/j.molcel.2017.03.011
|
[28]
|
Wang, Y., Wu, C., Du, Y., et al. (2022) Expanding Uncapped Translation and Emerging Function of Circular RNA in Carcinomas and Noncarcinomas. Molecular Cancer, 21, Article No. 13. https://doi.org/10.1186/s12943-021-01484-7
|
[29]
|
Rong, D., Tang, W., Li, Z., et al. (2017) Novel Insights into Circular RNAs in Clinical Application of Carcinomas. OncoTargets and Therapy, 10, 2183-2188. https://doi.org/10.2147/OTT.S134403
|
[30]
|
Li, H., Hao, X., Wang, H., et al. (2016) Circular RNA Expression Pro-file of Pancreatic Ductal Adenocarcinoma Revealed by Microarray. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 40, 1334-1344. https://doi.org/10.1159/000453186
|
[31]
|
Guo, S., Xu, X., Ouyang, Y., et al. (2018) Microarray Expression Profile Analysis of Circular RNAs in Pancreatic Cancer. Molecular Medicine Reports, 17, 7661-7671. https://doi.org/10.3892/mmr.2018.8827
|
[32]
|
Wong, C.H., Lou, U.K., Li, Y., et al. (2020) CircFOXK2 Promotes Growth and Metastasis of Pancreatic Ductal Adenocarcinoma by Complexing with RNA-Binding Proteins and Sponging MiR-942. Cancer Research, 80, 2138-2149.
https://doi.org/10.1158/0008-5472.CAN-19-3268
|
[33]
|
Meng, L., Zhang, Y., Wu, P., et al. (2022) CircSTX6 Pro-motes Pancreatic Ductal Adenocarcinoma Progression by Sponging miR-449b-5p and Interacting with CUL2. Molecular Cancer, 21, Article No. 121.
https://doi.org/10.1186/s12943-022-01599-5
|
[34]
|
Liu, L., Liu, F.B., Huang, M., et al. (2019) Circular RNA ciRS-7 Promotes the Proliferation and Metastasis of Pancreatic Cancer by Regulating miR-7-Mediated EGFR/STAT3 Signaling Pathway. Hepatobiliary & Pancreatic Diseases International, 18, 580-586. https://doi.org/10.1016/j.hbpd.2019.03.003
|
[35]
|
Guo, X., Zhou, Q., Su, D., et al. (2020) Circular RNA circBFAR Promotes the Progression of Pancreatic Ductal Adenocarcinoma via the miR-34b-5p/MET/Akt Axis. Molecular Cancer, 19, Article No. 83.
https://doi.org/10.1186/s12943-020-01196-4
|
[36]
|
Xu, S., Lei, S.L., Liu, K.J., et al. (2021) circSFMBT1 Promotes Pancreatic Cancer Growth and Metastasis via Targeting miR-330-5p/PAK1 Axis. Cancer Gene Therapy, 28, 234-249. https://doi.org/10.1038/s41417-020-00215-2
|
[37]
|
Rybak-Wolf, A., Stottmeister, C., Glažar, P., et al. (2015) Circu-lar RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Molecular Cell, 58, 870-885.
https://doi.org/10.1016/j.molcel.2015.03.027
|
[38]
|
Yang, F., Liu, D.Y., Guo, J.T., et al. (2017) Circular RNA circ-LDLRAD3 as a Biomarker in Diagnosis of Pancreatic Cancer. World Journal of Gastroenterology, 23, 8345-8354. https://doi.org/10.3748/wjg.v23.i47.8345
|
[39]
|
Seimiya, T., Otsuka, M., Iwata, T., et al. (2021) Aberrant Expres-sion of a Novel Circular RNA in Pancreatic Cancer. Journal of Human Genetics, 66, 181-191. https://doi.org/10.1038/s10038-020-00826-5
|
[40]
|
Xu, Y., Yao, Y., Gao, P., et al. (2019) Upregulated Circular RNA circ_0030235 Predicts Unfavorable Prognosis in Pancreatic Ductal Adenocarcinoma and Facilitates Cell Progres-sion by Sponging miR-1253 and miR-1294. Biochemical and Biophysical Research Communications, 509, 138-142. https://doi.org/10.1016/j.bbrc.2018.12.088
|
[41]
|
Li, J., Ye, Z., Hu, X., et al. (2022) Prognostic, Diagnostic, and Clinicopathological Significance of Circular RNAs in Pancreatic Cancer: A Systematic Review and Meta-Analysis. Can-cers, 14, Article No. 6187.
https://doi.org/10.3390/cancers14246187
|
[42]
|
Xu, C., Yu, Y. and Ding, F. (2018) Microarray Analysis of Circular RNA Expression Profiles Associated with Gemcitabine Resistance in Pancreatic Cancer Cells. Oncology Reports, 40, 395-404. https://doi.org/10.3892/or.2018.6450
|
[43]
|
Liu, Y., Xia, L., Dong, L., et al. (2020) CircHIPK3 Promotes Gemcitabine (GEM) Resistance in Pancreatic Cancer Cells by Sponging miR-330-5p and Targets RASSF1. Cancer Management and Research, 12, 921-929.
https://doi.org/10.2147/CMAR.S239326
|
[44]
|
Chen, Z.W., Hu, J.F., Wang, Z.W., et al. (2022) Circular RNA circ-MTHFD1L Induces HR Repair to Promote Gemcitabine Resistance via the miR-615-3p/RPN6 Axis in Pancreatic Ductal Adenocarcinoma. Journal of Experimental & Clinical Cancer Research: CR, 41, Article No. 153. https://doi.org/10.1186/s13046-022-02343-z
|
[45]
|
Hu, C., Xia, R., Zhang, X., et al. (2022) circFARP1 Enables Cancer-Associated Fibroblasts to Promote Gemcitabine Resistance in Pancreatic Cancer via the LIF/STAT3 Axis. Molec-ular Cancer, 21, Article No. 24.
https://doi.org/10.1186/s12943-022-01501-3
|
[46]
|
Shi, X., Yang, J., Liu, M., et al. (2022) Circular RNA ANAPC7 Inhibits Tumor Growth and Muscle Wasting via PHLPP2-AKT-TGF-β Signaling Axis in Pancreatic Cancer. Gastroen-terology, 162, 2004-2017.e2002.
https://doi.org/10.1053/j.gastro.2022.02.017
|
[47]
|
Tchakarska, G. and Sola, B. (2020) The Double Dealing of Cy-clin D1. Cell Cycle (Georgetown, Tex), 19, 163-178.
https://doi.org/10.1080/15384101.2019.1706903
|
[48]
|
Kong, Y., Li, Y., Luo, Y., et al. (2020) circNFIB1 Inhibits Lymphangiogenesis and Lymphatic Metastasis via the miR-486-5p/PIK3R1/VEGF-C Axis in Pancreatic Cancer. Molec-ular Cancer, 19, Article No. 82.
https://doi.org/10.1186/s12943-020-01205-6
|
[49]
|
Yang, J., Cong, X., Ren, M., et al. (2019) Circular RNA hsa_circRNA_0007334 Is Predicted to Promote MMP7 and COL1A1 Expression by Functioning as a miRNA Sponge in Pancreatic Ductal Adenocarcinoma. Journal of Oncology, 2019, Article ID: 7630894. https://doi.org/10.1155/2019/7630894
|
[50]
|
Zhou, X., Liu, K., Cui, J., et al. (2021) Circ-MBOAT2 Knockdown Represses Tumor Progression and Glutamine Catabolism by miR-433-3p/GOT1 Axis in Pancreatic Cancer. Journal of Experimental & Clinical Cancer Research: CR, 40, Article No. 124. https://doi.org/10.1186/s13046-021-01894-x
|
[51]
|
Shi, Q., Wang, Y., Mu, Y., et al. (2018) MiR-433-3p Inhibits Proliferation and Invasion of Esophageal Squamous Cell Carcinoma by Targeting GRB2. Cellular Physiology and Bio-chemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 46, 2187-2196. https://doi.org/10.1159/000489548
|