[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
|
[2]
|
Shaukat, A., Kahi, C.J., Burke, C.A., et al. (2021) ACG Clinical Guidelines: Colorectal Cancer Screening 2021. The American Journal of Gastroenterology, 116, 458-479. https://doi.org/10.14309/ajg.0000000000001122
|
[3]
|
Dekker, E., Tanis, P.J., Vleugels, J.L.A., Kasi, P.M. and Wallace, M.B. (2019) Colorectal Cancer. Lancet, 394, 1467-1480.
https://doi.org/10.1016/S0140-6736(19)32319-0
|
[4]
|
Keum, N. and Giovannucci, E. (2019) Global Burden of Colorectal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nature Reviews Gastroenterology & Hepatology, 16, 713-732.
https://doi.org/10.1038/s41575-019-0189-8
|
[5]
|
Heinimann, K. (2018) Hereditary Colorectal Cancer: Clinics, Diagnostics and Management. Therapeutische Umschau, 75, 601-606. https://doi.org/10.1024/0040-5930/a001046
|
[6]
|
Chandra, R., et al. (2021) The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers, 13, Article 6202. https://doi.org/10.3390/cancers13246206
|
[7]
|
Balahura, L.R., et al. (2020) Inflammation and Inflammasomes: Pros and Cons in Tumorigenesis. Journal of Immunology Research, 2020, Article ID: 2549763. https://doi.org/10.1155/2020/2549763
|
[8]
|
文雪梅, 夏俊凯, 张丽静, 等. 基于GEO数据库研究结肠癌的生物标志物[J]. 中国现代医生, 2022, 60(9): 1-7+106+197.
|
[9]
|
刘迁, 祁国萍, 于华裔, 等. 结肠癌核心基因和独立预后因子筛选的生物信息学分析[J]. 吉林大学学报(医学版), 2022, 48(3): 755-765.
|
[10]
|
操利超, 巴颖, 丁世涛, 等. 基于TCGA和GEO数据库探索结肠癌肿瘤微环境中的免疫相关预后因子[J]. 临床检验杂志, 2022, 40(6): 466-474.
|
[11]
|
Barrett, T., Wilhite, S.E., Ledoux, P., et al. (2013) NCBI GEO: Archive for Functional Genomics Data Sets—Update. Nucleic Acids Research, 41, D991-D995. https://doi.org/10.1093/nar/gks1193
|
[12]
|
Zhao, W., Dai, S., Yue, L., et al. (2022) Emerging Mechanisms Progress of Colorectal Cancer Liver Metastasis. Frontiers in Endocrinology, 13, Article 1081585. https://doi.org/10.3389/fendo.2022.1081585
|
[13]
|
Zhang, T., Yuan, K., Wang, Y., et al. (2021) Identification of Candidate Biomarkers and Prognostic Analysis in Colorectal Cancer Liver Metastases. Frontiers in Oncology, 11, Article 652354. https://doi.org/10.3389/fonc.2021.652354
|
[14]
|
Razi, S., Baradaran Noveiry, B., Keshavarz-Fathi, M. and Rezaei, N. (2019) IL-17 and Colorectal Cancer: From Carcinogenesis to Treatment. Cytokine, 116, 7-12. https://doi.org/10.1016/j.cyto.2018.12.021
|
[15]
|
Mirzaei, A., Mohammadi, S., Ghaffari, S.H., et al. (2018) Osteopontin b and c Splice Isoforms in Leukemias and Solid Tumors: Angiogenesis Alongside Chemoresistance. Asian Pacific Journal of Cancer Prevention, 19, 615-623.
|
[16]
|
Pang, X., Zhang, J., He, X., et al. (2021) SPP1 Promotes Enzalutamide Resistance and Epithelial-Mesenchymal-Transition Activation in Castration-Resistant Prostate Cancer via PI3K/AKT and ERK1/2 Pathways. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5806602. https://doi.org/10.1155/2021/5806602
|
[17]
|
Wei, J., Chen, Z., Hu, M., et al. (2021) Characterizing Intercellular Communication of Pan-Cancer Reveals SPP1+ Tumor-Associated Macrophage Expanded in Hypoxia and Promoting Cancer Malignancy through Single-Cell RNA-Seq Data. Frontiers in Cell and Developmental Biology, 9, Article 749210. https://doi.org/10.3389/fcell.2021.749210
|
[18]
|
Zeng, B., Zhou, M., Wu, H. and Xiong, Z. (2018) SPP1 Promotes Ovarian Cancer Progression via Integrin β1/FAK/AKT Signaling Pathway. OncoTargets and Therapy, 11, 1333-1343. https://doi.org/10.2147/OTT.S154215
|
[19]
|
Wang, Y., Su, J., Wang, Y., et al. (2019) The Interaction of YBX1 with G3BP1 Promotes Renal Cell Carcinoma Cell Metastasis via YBX1/G3BP1-SPP1-NF-κB Signaling Axis. Journal of Experimental & Clinical Cancer Research, 38, Article No. 386. https://doi.org/10.1186/s13046-019-1347-0
|
[20]
|
Gao, S., Gang, J., Yu, M., Xin, G. and Tan, H. (2021) Computational Analysis for Identification of Early Diagnostic Biomarkers and Prognostic Biomarkers of Liver Cancer Based on GEO and TCGA Databases and Studies on Pathways and Biological Functions Affecting the Survival Time of Liver Cancer. BMC Cancer, 21, Article No. 791.
https://doi.org/10.1186/s12885-021-08520-1
|
[21]
|
Liang, L., Lu, G., Pan, G., et al. (2019) A Case-Control Study of the Association between the SPP1 Gene SNPs and the Susceptibility to Breast Cancer in Guangxi., China. Frontiers in Oncology, 9, Article 1415.
https://doi.org/10.3389/fonc.2019.01415
|
[22]
|
Xu, C., Sun, L., Jiang, C., et al. (2017) SPP1, Analyzed by Bioinformatics Methods, Promotes the Metastasis in Colorectal Cancer by Activating EMT Pathway. Biomedicine & Pharmacotherapy, 91, 1167-1177.
https://doi.org/10.1016/j.biopha.2017.05.056
|
[23]
|
Vaquero, J., Guedj, N., Clapéron, A., Nguyen Ho-Bouldoires, T.H., Paradis, V. and Fouassier, L. (2017) Epithelial-Mesenchymal Transition in Cholangiocarcinoma: From Clinical Evidence to Regulatory Networks. Journal of Hepatology, 66, 424-441. https://doi.org/10.1016/j.jhep.2016.09.010
|
[24]
|
Choe, E.K., Yi, J.W., Chai, Y.J. and Park, K.J. (2018) Upregulation of the Adipokine Genes ADIPOR1 and SPP1 Is Related to Poor Survival Outcomes in Colorectal Cancer. Journal of Surgical Oncology, 117, 1833-1840.
https://doi.org/10.1002/jso.25078
|
[25]
|
Gobin, E., Bagwell, K., Wagner, J., et al. (2019) A Pan-Cancer Perspective of Matrix Metalloproteases (MMP) Gene Expression Profile and Their Diagnostic/Prognostic Potential. BMC Cancer, 19, Article No. 581.
https://doi.org/10.1186/s12885-019-5768-0
|
[26]
|
Jiang, S., Liu, H., Zhang, J., Zhang, F., Fan, J. and Liu, Y. (2021) MMP1 Regulated by NEAT1/miR-361-5p Axis Facilitates the Proliferation and Migration of Cutaneous Squamous Cell Carcinoma via the Activation of Wnt Pathway. Cancer Biology & Therapy, 22, 381-391. https://doi.org/10.1080/15384047.2021.1941583
|
[27]
|
Liu, M., Hu, Y., Zhang, M.-F., et al. (2016) MMP1 Promotes Tumor Growth and Metastasis in Esophageal Squamous Cell Carcinoma. Cancer Letters, 377, 97-104. https://doi.org/10.1016/j.canlet.2016.04.034
|
[28]
|
Zhang, W., Huang, X., Huang, R., et al. (2022) MMP1 Overexpression Promotes Cancer Progression and Associates with Poor Outcome in Head and Neck Carcinoma. Computational and Mathematical Methods in Medicine, 2022, Article ID: 3058342. https://doi.org/10.1155/2022/3058342
|
[29]
|
Scheau, C., Badarau, I.A., Costache, R., et al. (2019) The Role of Matrix Metalloproteinases in the Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma. Analytical Cellular Pathology, 2019, Article ID: 9423907.
https://doi.org/10.1155/2019/9423907
|
[30]
|
Chu, C., Liu, X., Bai, X., et al. (2018) MiR-519d Suppresses Breast Cancer Tumorigenesis and Metastasis via Targeting MMP3. International Journal of Biological Sciences, 14, 228-236. https://doi.org/10.7150/ijbs.22849
|
[31]
|
Lyu, X., Xu, X., Song, A., Guo, J., Zhang, Y. and Zhang, Y. (2019) Ginsenoside Rh1 Inhibits Colorectal Cancer Cell Migration and Invasion in Vitro and Tumor Growth in Vivo. Oncology Letters, 18, 4160-4166.
https://doi.org/10.3892/ol.2019.10742
|
[32]
|
Tang, B., Xu, D., Zhao, Y., Liang, G., Chen, X. and Wang, L. (2018) Celastrol Inhibits Colorectal Cancer Cell Proliferation and Migration through Suppression of MMP3 and MMP7 by the PI3K/AKT Signaling Pathway. Anti-Cancer Drugs, 29, 530-538. https://doi.org/10.1097/CAD.0000000000000621
|
[33]
|
Atretkhany, K.N., Drutskaya, M.S., Nedospasov, S.A., Grivennikov, S.I. and Kuprash, D.V. (2016) Chemokines, Cytokines and Exosomes Help Tumors to Shape Inflammatory Microenvironment. Pharmacology & Therapeutics, 168, 98-112. https://doi.org/10.1016/j.pharmthera.2016.09.011
|
[34]
|
Roy, I., Getschman, A.E., Volkman, B.F. and Dwinell, M.B. (2017) Exploiting Agonist Biased Signaling of Chemokines to Target Cancer. Molecular Carcinogenesis, 56, 804-813. https://doi.org/10.1002/mc.22571
|
[35]
|
Zhuo, C., Wu, X., Li, J., et al. (2018) Chemokine (C-X-C Motif) Ligand 1 Is Associated with Tumor Progression and Poor Prognosis in Patients with Colorectal Cancer. Bioscience Reports, 38, BSR20180580.
https://doi.org/10.1042/BSR20180580
|
[36]
|
Zhao, J., Ou, B., Han, D., et al. (2017) Tumor-Derived CXCL5 Promotes Human Colorectal Cancer Metastasis through Activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-Catenin Pathways. Molecular Cancer, 16, Article No. 70.
https://doi.org/10.1186/s12943-017-0629-4
|
[37]
|
Wang, D., Sun, H., Wei, J., Cen, B. and DuBois, R.N. (2017) CXCL1 Is Critical for Premetastatic Niche Formation and Metastasis in Colorectal Cancer. Cancer Research, 77, 3655-3665.
https://doi.org/10.1158/0008-5472.CAN-16-3199
|