[1]
|
(2002) K/DOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification. American Journal of Kidney Diseases, 39, S1-S266.
|
[2]
|
Hill, N.R., Fatoba, S.T., Oke, J.L., et al. (2016) Global Prev-alence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLOS ONE, 11, e0158765. https://doi.org/10.1371/journal.pone.0158765
|
[3]
|
Matsushita, K., Van der Velde, M., Astor, B.C., et al. (2010) Association of Estimated Glomerular Filtration Rate and Albuminuria with All-Cause and Cardiovascular Mortality in General Population Cohorts: A Collaborative Meta-Analysis. The Lancet, 375, 2073-2081. https://doi.org/10.1016/S0140-6736(10)60674-5
|
[4]
|
Kis, E., Ablonczy, L. and Reusz György, S. (2018) Cardiac Magnetic Resonance Imaging of the Myocardium in Chronic Kidney Disease. Kidney and Blood Pressure Research, 43, 134-142. https://doi.org/10.1159/000487367
|
[5]
|
Charytan, D.M., Padera, R., Helfand, A.M., et al. (2014) In-creased Concentration of Circulating Angiogenesis and Nitric Oxide Inhibitors Induces Endothelial to Mesenchymal Transition and Myocardial Fibrosis in Patients with Chronic Kidney Disease. International Journal of Cardiology, 176, 99-109. https://doi.org/10.1016/j.ijcard.2014.06.062
|
[6]
|
Quarta, G., Gori, M., Iorio, A., et al. (2020) Cardiac Magnetic Resonance in Heart Failure with Preserved Ejection Fraction: Myocyte, Interstitium, Microvascular, and Meta-bolic Abnormalities. European Journal of Heart Failure, 22, 1065-1075. https://doi.org/10.1002/ejhf.1961
|
[7]
|
Ibanez, B., Aletras, A.H., Arai, A.E., et al. (2019) Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials: JACC Scientific Expert Panel. JACC: Journal of the American College of Cardiology, 74, 238-256.
https://doi.org/10.1016/j.jacc.2019.05.024
|
[8]
|
Badve, S.V., Palmer, S.C., Strippoli, G.F.M., et al. (2016) The Va-lidity of Left Ventricular Mass as a Surrogate End Point for All-Cause and Cardiovascular Mortality Outcomes in People with CKD: A Systematic Review and Meta-Analysis. American Journal of Kidney Diseases, 68, 554-563. https://doi.org/10.1053/j.ajkd.2016.03.418
|
[9]
|
Smiseth, O.A., Torp, H., Opdahl, A., et al. (2016) Myocardial Strain Imaging: How Useful Is It in Clinical Decision Making? European Heart Journal, 37, 1196-1207. https://doi.org/10.1093/eurheartj/ehv529
|
[10]
|
Negishi, K., Negishi, T., Haluska, B.A., et al. (2014) Use of Speckle Strain to Assess Left Ventricular Responses to Cardiotoxic Chemotherapy and Cardioprotection. European Heart Jour-nal—Cardiovascular Imaging, 15, 324-331.
https://doi.org/10.1093/ehjci/jet159
|
[11]
|
Scatteia, A., Baritussio, A. and Bucciarelli-Ducci, C. (2017) Strain Imaging Using Cardiac Magnetic Resonance. Heart Failure Reviews, 22, 465-476. https://doi.org/10.1007/s10741-017-9621-8
|
[12]
|
Truong, V.T., Palmer, C., Wolking, S., et al. (2020) Normal Left Atrial Strain and Strain Rate Using Cardiac Magnetic Resonance Feature Tracking in Healthy Volunteers. European Heart Journal—Cardiovascular Imaging, 21, 446-453.
https://doi.org/10.1093/ehjci/jez157
|
[13]
|
Bucius, P., Erley, J., Tanacli, R., et al. (2020) Comparison of Feature Tracking, Fast-SENC, and Myocardial Tagging for Global and Segmental Left Ventricular Strain. ESC Heart Failure, 7, 523-532. https://doi.org/10.1002/ehf2.12576
|
[14]
|
Flachskampf, F.A., Blankstein, R., Grayburn, P.A., et al. (2019) Global Longitudinal Shortening: A Positive Step towards Reducing Confusion Surrounding Global Longitudinal Strain. JACC: Cardiovascular Imaging, 12, 1566-1567.
https://doi.org/10.1016/j.jcmg.2019.03.032
|
[15]
|
Vo, H.Q., Marwick, T.H. and Negishi, K. (2018) MRI-Derived Myocardial Strain Measures in Normal Subjects. JACC: Cardiovascular Imaging, 11, 196-205. https://doi.org/10.1016/j.jcmg.2016.12.025
|
[16]
|
Hoit, B.D. (2014) Left Atrial Size and Function: Role in Prognosis. JACC: Journal of the American College of Cardiology, 63, 493-505. https://doi.org/10.1016/j.jacc.2013.10.055
|
[17]
|
Kowallick, J.T., Morton, G., Lamata, P., et al. (2015) Quantification of Atrial Dynamics Using Cardiovascular Magnetic Resonance: Inter-Study Reproducibility. Journal of Cardiovascular Magnetic Resonance, 17, Article No. 36.
https://doi.org/10.1186/s12968-015-0140-2
|
[18]
|
Krishnasamy, R., Isbel, N.M., Hawley, C.M., et al. (2015) Left Ventricular Global Longitudinal Strain (GLS) Is a Superior Predictor of All-Cause and Cardiovascular Mortality When Compared to Ejection Fraction in Advanced Chronic Kidney Disease. PLOS ONE, 10, e0127044. https://doi.org/10.1371/journal.pone.0127044
|
[19]
|
周玉祥. 不同分期慢性肾病患者心肌Native T1-mapping和FT-CMR研究[D]: [硕士学位论文]. 昆明: 昆明医科大学, 2020.
|
[20]
|
Saeed, M., Van, T.A., Krug, R., et al. (2015) Cardiac MR Imaging: Current Status and Future Direction. Cardiovascular Diagnosis and Therapy, 5, 290-310.
|
[21]
|
Rubenstein, J.C., Lee, D.C., Wu, E., et al. (2013) A Comparison of Cardiac Magnetic Resonance Imag-ing Peri-Infarct Border Zone Quantification Strategies for the Prediction of Ventricular Tachyarrhythmia Inducibility. Cardiology Journal, 20, 68-77. https://doi.org/10.5603/CJ.2013.0011
|
[22]
|
Karmonik, C., Malaty, A., Bikram, M., et al. (2014) Fast in Vivo Quantification of T1 and T2 MRI Relaxation Times in the Myocardium Based on Inversion Recovery SSFP with in Vitro Validation Post Gd-Based Contrast Administration. Cardiovascular Diagnosis and Ther-apy, 4, 88-96.
|
[23]
|
Schmidt, A., Azevedo, C.F., Cheng, A., et al. (2007) Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients with Left Ventricular Dysfunction. Circulation, 115, 2006-2014. https://doi.org/10.1161/CIRCULATIONAHA.106.653568
|
[24]
|
Mark, P.B., John-ston, N., et al. (2006) Redefinition of Uremic Cardiomyopathy by Contrast-Enhanced Cardiac Magnetic Resonance Im-aging. Kidney International, 69, 1839-1845. https://doi.org/10.1038/sj.ki.5000249
|
[25]
|
Edwards, N.C., Ferro, C.J., Townend, J.N., et al. (2007) Myocardial Disease in Systemic Vasculitis and Autoimmune Disease Detected by Cardio-vascular Magnetic Resonance. Rheumatology (Oxford), 46, 1208-1209.
https://doi.org/10.1093/rheumatology/kem077
|
[26]
|
Hamlin, S.A., Henry, T.S., Little, B.P., et al. (2014) Mapping the Future of Cardiac MR Imaging: Case-Based Review of T1 and T2 Mapping Techniques. Radiographics, 34, 1594-1611. https://doi.org/10.1148/rg.346140030
|
[27]
|
Sibley, C.T., Noureldin, R.A., Gai, N., et al. (2012) T1 Mapping in Cardiomyopathy at Cardiac MR: Comparison with Endomyocardial Biopsy. Radiology, 265, 724-732. https://doi.org/10.1148/radiol.12112721
|
[28]
|
Wong, T.C., Piehler, K., Meier, C.G., et al. (2012) Association be-tween Extracellular Matrix Expansion Quantified by Cardiovascular Magnetic Resonance and Short-Term Mortality. Circulation, 126, 1206-1216.
https://doi.org/10.1161/CIRCULATIONAHA.111.089409
|
[29]
|
Appelbaum, E., Maron, B.J., Adabag, S., et al. (2012) Intermediate-Signal-Intensity Late Gadolinium Enhancement Predicts Ventricular Tachyarrhythmias in Patients with Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging, 5, 78-85. https://doi.org/10.1161/CIRCIMAGING.111.963819
|
[30]
|
Moon, J.C., Messroghli, D.R., Kellman, P., et al. (2013) Myocardial T1 Mapping and Extracellular Volume Quantification: A Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology Consensus Statement. Journal of Cardio-vascular Magnetic Resonance, 15, Article No. 92.
https://doi.org/10.1186/1532-429X-15-92
|
[31]
|
Von Knobelsdorff-Brenkenhoff, F., Prothmann, M., Dieringer, M.A., et al. (2013) Myocardial T1 and T2 Mapping at 3 T: Reference Values, Influencing Factors and Implications. Journal of Cardiovascular Magnetic Resonance, 15, Article No. 53. https://doi.org/10.1186/1532-429X-15-53
|
[32]
|
Karamitsos, T.D., Piechnik, S.K., Banypersad, S.M., et al. (2013) Noncontrast T1 Mapping for the Diagnosis of Cardiac Amyloidosis. JACC: Cardiovascular Imaging, 6, 488-497. https://doi.org/10.1016/j.jcmg.2012.11.013
|