|
[1]
|
Kausar, S., Khan, S.F., Ur Rehman, M.I.M., et al. (2021) A Review: Mechanism of Action of Antiviral Drugs. Interna-tional Journal of Immunopathology and Pharmacology, 35, Article ID: 20587384211002621. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Quan, D.J. and Peters, M.G. (2004) Antiviral Therapy: Nucleo-tide and Nucleoside Analoga. Clinics in Liver Disease, 8, 371-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lin, X., Liang, C., Zou, L., et al. (2021) Advance of Structural Modification of Nucleosides Scaffold. European Journal of Medicinal Chemistry, 214, Article ID: 113233. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Peter, H.L., Ku, T.C. and Seley-Radtke, K.L. (2015) Flexibility as a Strategy in Nucleoside Antiviral Drug Design. Current Medicinal Chemistry, 22, 3910-3921. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Prusoff, W.H. (1959) Synthesis and Biological Activi-ties of Iododeoxyuridine, an Analog of Thymidine. Biochimica et Biophysica Acta, 32, 295-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
De Clercq, E. (2010) Historical Perspectives in the Develop-ment of Antiviral Agents aganist Poxviruses. Viruses, 2, 1322-1339. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bridges, C.G., Ahmed, S.P., Sunkara, P.S., McCarthy, J.R. and Tyms, A.S. (1995) The Ribonucleotide Reductase Inhibitor (E)-2’-Fluoromethylene-2’-Deoxycytidine: A Potential Topical Therapy for Herpes Simplex Virus Infection. Antiviral Research, 27, 325-334. [Google Scholar] [CrossRef]
|
|
[8]
|
De Clercq, E., Descamps, J., De Somer, P., et al. (1979) (E)-5-(2-Bromovinyl)-2’-Deoxyuridine: A Potent and Selective Anti-Herpes Agent. Proceedings of the National Acade-my of Sciences of the United States of America, 76, 2947-2951. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Staschke, K.A., Colacino, J.M., Mabry, T.E. and Jones, C.D. (1994) The in Vitro Anti-Hepatitis B Virus Activity of FIAU[1-(2’-Deoxy-2’-Fluoro-1-β-D-Arabinofuranosyl-5-Iodo) Uracil] Is Selective, Reversible, and Determined, at Least in Part, by the Host Cell. Antiviral Research, 23, 45-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Mian, A.M. and Khwaja, T.A. (1983) Synthesis and Anti-tumor Activity of 2-Deoxyribofuranosides of 3-Deazaguanine. Journal of Medicinal Chemistry, 26, 286-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chang, H.-W., Wang, H.-C., Chen, C.-Y., et al. (2014) 5-Azacytidine Induces Anokis, Inhibits Mammosphere Formation and Reduces Metalloproteinase 9 Activity in MCF-7 Human Breast Cancer Cells. Molecules, 19, 3149-3159. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhou, C.-H. and Wang, Y. (2012) Recent Researches in Triazole Compounds as Medical Drugs. Current Medicinal Chemistry, 19, 239-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sabat, N., Migianu-Griffoni, E., Tudela, T., et al. (2020) Syn-thesis and Antitumor Activities Investigation of a C-Nucleoside Analogue of Ribavirin. European Journal of Medicinal Chemistry, 188, Article ID: 112009. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dan Do, T.N., Donckers, K., Vangeel, L., et al. (2021) A Ro-bust SARA-CoV-2 Replication Model in Primary Human Epithelial Cells at the Air Liquid Interface to Assess Antiviral Agents. Antiviral Research, 192, Article ID: 105122. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Xie, Y., Yin, W., Zhang, Y., et al. (2021) Design and Devel-opment of an Oral Remdesivir Derivative VV116 against SARS-CoV-2. Cell Research, 31, 1212-1214. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Tosh, D.K., Janowsky, A., Eshleman, A.J., et al. (2017) Scaf-fold Repurposing of Nucleosides (Adenosine Receptor Agonists): Ehhanced Activity at the Humann Dopamine and Nerepinephrine Sodium Symporters. Journal of Medicinal Chemistry, 60, 3109-3123. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Suzuki, M., Okuda, T. and Shiraki, K. (2006) Synergistic An-tiviral Activity of Acyclovir and Vidarabine against Herps Simplex Virus Types 1 and 2 and Varicella-Zoster Virus. An-tiviral Research, 72, 157-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Müller, H., Gabrielli, V., Agoglitta, O. and Holl, R. (2016) Chiral Pool Synthesis and Biological Evaluation of C-Furanosidic and Acyclic LpxC Inhibitors. European Journal of Medicinal Chemistry, 110, 340-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Costanzi, S., Lambertucci, C., Portino, F.R., et al. (2005) Ring Opening Reactions: Synthesis of AICAR Analogs as Potential Antimetabolite Agents. Nucleosides, Nucleotides & Nu-cleic Acids, 24, 415-418. [Google Scholar] [CrossRef]
|
|
[20]
|
Mikhailopulo, I.A., Poopeiko, N.E., Pricota, T.I., et al. (1991) Syn-thesis and Antiviral and Cytostatic Properties of 3’-Deoxy-3’-Fluoro- and 2’-Azido-3’-Fluoro-2’,3’-Dedeoxy-D-Ribofuranosides of Natural Heterocyclic Bases. Journal of Medicinal Chemistry, 34, 2195-2202. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Choi, Y., George, C., Comin, M.J., et al. (2003) A Conformationally Locked Analogue of the Anti-HIV Agent Stavudine. An Important Correlation between Pseudorotation and Maximum Amplitude. Journal of Medicinal Chemistry, 46, 3292-3299. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Smith, R.A., Gottlieb, G.S., Anderson, D.J., Pyrak, C.L. and Preston, B.D. (2008) Human Immunodeficiency Virus Types 1 and 2 Exhibit Comparable Sensitivities to Zidovudine and Other Nucleoside Analog Inhibitors in Vitro. Antimicrobial Agents and Chemotherapy, 52, 329-332. [Google Scholar] [CrossRef]
|
|
[23]
|
Chang, J. (2022) 4’-Modified Nucleosides for Antiviral Drug Dis-covery: Achievements and Perspectives. Accounts of Chemical Research, 55, 565-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bianco, A., Passacantilli, P. and Righi, G. (1988) Improved Procedure for the Reduction of Esters of Alcohols by Sodium Borohydride. Synthetic Communications, 18, 1765-1771. [Google Scholar] [CrossRef]
|
|
[25]
|
Parang, K., El-Sayed, N.S., Kazeminy, A. and Tiwari, R.K. (2020) Comparative Antiviral Activity of Remdesivir and Anti-HIV Nucleoside Analogs against Human Coronavirus 229E (HcoV-229E). Molecules, 25, 2343-2350. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Magg, H., Rydzewski, R.M., McRoberts, M.J., et al. (1992) Synthesis and Anti-HIV Activity of 4’-Azido- and 4’-Methoxynucleosides. Journal of Medicinal Chemistry, 35, 1440-1451. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Houston, D.M., Dolence, E.K., Keller, B.T., et al. (1985) Potential Inhibitors of S-Adenosylmethionine-Dependent Methyltransferases. 9. 2’,3’-Dialdehyde Derivatives of Carbo-cyclic Purine Nucleosides as Inhibitors of S-Adenosyl- homocysteine Hydrolase. Journal of Medicinal Chemistry, 28, 471-477. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Jordheim, L.P., Durantel, D., Zoulim, F. and Dumontet, C. (2013) Advances in the Development of Nucleoside and Nucleotide Analogies for Cancer and Viral Diseases. Nature Reviews Drug Discovery, 12, 447-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Harnden, M.R., Jarvest, R.L., Bacon, T.H. and Boyd, M.R. (1987) Synthesis and Antiviral Activity of 9-[4-Hy- droxy-3-(Hydroxymethyl)but-1-yl]Purines. Journal of Medicinal Chemistry, 30, 1636-1642. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Štambaský, J., Hocek, M. and Kocovský, P. (2009) C-Nucleosides: Synthetic Strategies and Biological Applications. Chemical Reviews, 109, 6729-6764. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, M. and Witte, C.-P. (2020) A Kinase and a Glycosylase Catabolize Pseudouridine in the Peroxisome to Prevent Toxic Pseudouridine Monophosphate Accumulation. The Plant Cell, 32, 722-739. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kan, G.Y., Wang, Z.Y., Sheng, C.S., et al. (2021) Dual Inhibi-tion of DKC1 and MEK1/2 Synergistically Restrains the Growth of Colorectal Cancer Cells. Advanced Science, 8, Article ID: 2004344. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Carrasco, L. and Váquez, D. (1984) Molecular Bases for the Action and Selectivity of Nucleoside Antibiotica. Medicinal Research Reviews, 4, 471-512. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kicska, G.A., Long, L., Hörig, H, et al. (2001) Immucillin H, a Powerful Transition-State Analog Inhibitor of Purine Nucleoside Phosphorylase, Selectively Inhibits Human T Lym-phocytes. Proceedings of the National Academy of Sciences of the United States of America, 98, 4593-4598. [Google Scholar] [CrossRef] [PubMed]
|