|
[1]
|
王建柱, 李清勇, 张靖, 等. 轨道病害视觉检测: 背景、方法与趋势[J]. 中国图象图形学报, 2021, 26(2): 287-296.
|
|
[2]
|
Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R. and De Schutter, B. (2016) Deep Convolutional Neural Networks for Detection of Rail Surface Defects. Proceedings of 2016 International Joint Conference on Neural Networks, 24-29 July 2016, 2584-2589.
|
|
[3]
|
Dong, B.Y., Li, Q.Y., Wang, J.Z., Huang, W., Dai, P. and Wang, S.C. (2019) An End-to-End Abnormal Fastener Detection Method Based on Data Synthesis. Proceedings of the 31st IEEE International Conference on Tools with Artificial Intelligence, 4-6 November 2019, 149-156.
|
|
[4]
|
Dou, Y., Huang, Y., Li, Q. and Luo, S. (2014) A Fast Template Matching-Based Algorithm for Railway Bolts Detection. International Journal of Machine Learning and Cybernetics, 5, 835-844. [Google Scholar] [CrossRef]
|
|
[5]
|
孙秀秀. 基于深度学习的高铁钢轨波磨检测的研究[D]: [硕士学位论文]. 北京: 北京建筑大学, 2020.[CrossRef]
|
|
[6]
|
He, K.M., Zhang, X.Y., Ren, S.Q. and Sun, J. (2014) Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence, 37, 1904-1916. [Google Scholar] [CrossRef]
|
|
[7]
|
Liang, P., Deng, C., Wu, J. and Yang, Z.X. (2020) Intelligent Fault Diagnosis of Rotating Machinery Via Wavelet Transform, Generative Adversarial Nets, and Convolutional Neural Networks. Measurement, 159, Article ID: 107768. [Google Scholar] [CrossRef]
|
|
[8]
|
谢清林, 陶功权, 温泽峰. 基于一维卷积神经网络的地铁钢轨波磨识别方法[J]. 中南大学学报(自然科学版), 2021, 52(4): 1371-1379.
|
|
[9]
|
谢烨, 赵闻强, 杨红运, 等. 基于一维深度卷积生成对抗网络的钢轨波磨识别方法[J]. 铁道建筑, 2022, 62(12): 62-66, 71.
|
|
[10]
|
Xie, Q.L., Tao, G.Q., Lo, S.M., et al. (2023) A Data-Driven Convolutional Regression Scheme for On-Board and Quantitative Detection of Rail Corrugation Roughness. Wear, 524-525, Article ID: 204770. [Google Scholar] [CrossRef]
|
|
[11]
|
李倩. 基于深度信念网络的图像识别及其应用研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2016.
|
|
[12]
|
Krizhevsky, A., Sutskever, I. and Hinton, E.G. (2017) ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90. [Google Scholar] [CrossRef]
|
|
[13]
|
王兵水, 郑树彬, 李立明, 等. 基于YOLO改进算法的轨道扣件状态检测研究[J]. 智能计算机与应用, 2020, 10(1): 137-143.
|
|
[14]
|
Li, W., Shen, Z. and Li, P. (2019) Crack Detection of Track Plate Based on YOLO. 2019 12th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, 14-15 December 2019, 15-18. [Google Scholar] [CrossRef]
|
|
[15]
|
Girshick, R. (2015) Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision, Santiago, 7-13 December 2015, 1440-1448. [Google Scholar] [CrossRef]
|
|
[16]
|
Ren, S., He, K., Girshick, R. and Sun, J. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149.
|
|
[17]
|
魏秀琨, 魏德华, 贾利民, 等. 基于改进YOLOv3网络模型的轨道线路病害辨识方法[P]. 中国专利, CN110533640B. 2022-03-01.
|
|
[18]
|
Mi, Z.Z., Chen, R. and Zhao, S.S. (2023) Research on Steel Rail Surface Defects Detection Based on Improved YOLOv4 Network. Frontiers in Neurorobotics, 17, Article 1119896. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, C., Xu, D., Zhang, L., et al. (2023) Rail Surface Defect Detection Based on Image Enhancement and Improved YOLOX. Electronics, 12, Article 2672. [Google Scholar] [CrossRef]
|
|
[20]
|
Luo, H., Cai, L. and Li, C. (2023) Rail Surface Defect Detection Based on an Improved YOLOv5s. Applied Sciences, 13, Article 7330. [Google Scholar] [CrossRef]
|
|
[21]
|
Jin, X.T., Wang, Y.N., Zhang, H., Zhong, H., Liu, L., Wu, Q.M.J. and Yang, Y.M. (2020) DM-RIS: Deep Multimodel Rail Inspection System with Improved MRF-GMM and CNN. IEEE Transactions on Instrumentation and Measurement, 69, 1051-1065. [Google Scholar] [CrossRef]
|
|
[22]
|
Wang, H., Li, M. and Wan, Z. (2022) Rail Surface Defect Detection Based on Improved Mask R-CNN. Computers and Electrical Engineering, 102, Article ID: 108269. [Google Scholar] [CrossRef]
|
|
[23]
|
Yang, H.J., Liu, J.X., Mei, G.M., et al. (2023) Research on Real-Time Detection Method of Rail Corrugation Based on Improved ShuffleNet V2. Engineering Applications of Artificial Intelligence, 126, Article ID: 106825. [Google Scholar] [CrossRef]
|
|
[24]
|
董艳茹. 基于多线结构光视觉的钢轨波磨检测[D]: [硕士学位论文]. 长沙: 湖南大学, 2019.[CrossRef]
|
|
[25]
|
李文虎. 基于双目视觉的钢轨波磨测量方法及其应用[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2019.[CrossRef]
|
|
[26]
|
崔文凯. 基于虚实结合的钢轨表面缺陷检测研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2022.[CrossRef]
|
|
[27]
|
Chen, Z., Wang, Q., He, Q., et al. (2022) CUFuse: Camera and Ultrasound Data Fusion for Rail Defect Detection. IEEE Transactions on Intelligent Transportation Systems, 23, 21971-21983. [Google Scholar] [CrossRef]
|
|
[28]
|
Yang, T., Xu, T., Cheng, Y., et al. (2023) A Fusion Method Based on 1D Vibration Signals and 2D Images for Detection of Railway Surface Defects. 2023 3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE), Guangzhou, 24-26 February 2023, 282-286. [Google Scholar] [CrossRef]
|