[1]
|
Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P. and Liu, J. (2011) Electrochemical Energy Storage for Green Grid. Chemical Reviews, 111, 3577-3613. https://doi.org/10.1021/cr100290v
|
[2]
|
Kang, H., Liu, Y., Cao, K., Zhao, Y., Jiao, L., Wang, Y. and Yuan, H. (2015) Update on Anode Materials for Na-Ion Batteries. Journal of Materials Chemistry A, 3, 17899-17913. https://doi.org/10.1039/C5TA03181H
|
[3]
|
Larcher, D. and Tarascon, J.M. (2015) Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nature Chemistry, 7, 19-29. https://doi.org/10.1038/nchem.2085
|
[4]
|
Zhu, Z., Zhong, W., Zhang, Y., Dong, P., Sun, S., Zhang, Y. and Li, X. (2021) Elucidating Electrochemical Intercalation Mechanisms of Biomass-Derived Hard Carbon in Sodium-/Potassium-Ion Batteries. Carbon Energy, 3, 541-553.
https://doi.org/10.1002/cey2.111
|
[5]
|
Zhao, Q., Chen, X., Hou, W., Ye, B., Zhang, Y., Xia, X. and Wang, J. (2022) A Facile, Scalable, High Stability Lithium Metal Anode. SusMat, 2, 104-112. https://doi.org/10.1002/sus2.43
|
[6]
|
Zhang, L.L., Wei, C., Fu, X.Y., Chen, Z.Y., Yan, B., Sun, P.P., Chang, K.J. and Yang, X.L. (2021) Ternary Ni-Based Prussian Blue Analogue with Superior Sodium Storage Performance Induced by Synergistic Effect of Co and Fe. Carbon Energy, 3, 827-839. https://doi.org/10.1002/cey2.142
|
[7]
|
Shen, S., Zhou, R., Li, Y., Liu, B., Pan, G., Liu, Q., Xiong, Q., Wang, X., Xia, X. and Tu, J. (2019) Bacterium, Fungus, and Virus Microorganisms for Energy Storage and Conversion. Small Methods, 3, Article ID: 1900596.
https://doi.org/10.1002/smtd.201900596
|
[8]
|
Yao, H., Yuan, T., Zhang, L., Soule, L., Zhang, P., Pang, Y., Yang, J., Ma, Z.F. and Zheng, S. (2020) Spherical Sodium Metal Deposition and Growth Mechanism Study in Three-Electrode Sodium-Ion Full-Cell System. Journal of Power Sources, 455, Article ID: 227919. https://doi.org/10.1016/j.jpowsour.2020.227919
|
[9]
|
Lee, J.M., Singh, G., Cha, W., Kim, S., Yi, J., Hwang, S.J. and Vinu, A. (2020) Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes. ACS Energy Letters, 5, 1939-1966.
https://doi.org/10.1021/acsenergylett.0c00973
|
[10]
|
Wang, T., Hua, Y., Xu, Z. and Yu, J.S. (2021) Recent Advanced Development of Artificial Interphase Engineering for Stable Sodium Metal Anodes. Small, 18, Article ID: 2102250. https://doi.org/10.1002/smll.202102250
|
[11]
|
Li, L., Zheng, Y., Zhang, S., Yang, J., Shao, Z. and Guo, Z. (2018) Recent Progress on Sodium Ion Batteries: Potential High-Performance Anodes. Energy & Environmental Science, 11, 2310-2340. https://doi.org/10.1039/C8EE01023D
|
[12]
|
Hwang, J.Y., Myung, S.T. and Sun, Y.K. (2017) Sodium-Ion Batteries: Present and Future. Chemical Society Reviews, 46, 3529-3614. https://doi.org/10.1039/C6CS00776G
|
[13]
|
Qi, Y., Lu, Y., Ding, F., Zhang, Q., Li, H., Huang, X., Chen, L. and Hu, Y.S. (2019) Slope-Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Na-Ion Batteries. Angewandte Chemie International Edition, 58, 4361-4365. https://doi.org/10.1002/anie.201900005
|
[14]
|
Fang, H., Gao, S., Zhu, Z., Ren, M., Wu, Q., Li, H. and Li, F. (2021) Recent Progress and Perspectives of Sodium Metal Anodes for Rechargeable Batteries. Chemical Research in Chinese Universities, 37, 189-199.
https://doi.org/10.1007/s40242-021-0449-3
|
[15]
|
Bauer, A., Song, J., Vail, S., Pan, W., Barker, J. and Lu, Y. (2018) The Scale-Up and Commercialization of Nonaqueous Na-Ion Battery Technologies. Advanced Energy Materials, 8, Article ID: 1702869.
|
[16]
|
Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M.H. and Rojo, T. (2013) Update on Na-Based Battery Materials. A Growing Research Path. Energy & Environmental Science, 6, 2312-2337.
https://doi.org/10.1039/c3ee41031e
|
[17]
|
Matios, E., Wang, H., Wang, C. and Li, W. (2019) Enabling Safe Sodium Metal Batteries by Solid Electrolyte Interphase Engineering: A Review. Industrial & Engineering Chemistry Research, 58, 9758-9780.
https://doi.org/10.1021/acs.iecr.9b02029
|
[18]
|
Hasa, I., Mariyappan, S., Saurel, D., Adelhelm, P., Koposov, A.Y., Masquelier, C., Croguennec, L. and Casas-Cabanas, M. (2021) Challenges of Today for Na-Based Batteries of the Future: From Materials to Cell Metrics. Journal of Power Sources, 482, Article ID: 228872. https://doi.org/10.1016/j.jpowsour.2020.228872
|
[19]
|
Zhao, Y., Adair, K.R. and Sun, X. (2018) Recent Developments and Insights into the Understanding of Na Metal Anodes for Na-Metal Batteries. Energy & Environmental Science, 11, 2673-2695. https://doi.org/10.1039/C8EE01373J
|
[20]
|
Liu, S., Tang, S., Zhang, X., Wang, A., Yang, Q.H. and Luo, J. (2017) Porous Al Current Collector for Dendrite-Free Na Metal Anodes. Nano Letters, 17, 5862-5868. https://doi.org/10.1021/acs.nanolett.7b03185
|
[21]
|
Zhao, Y., Wang, L.P., Sougrati, M.T., Feng, Z., Leconte, Y., Fisher, A., Srinivasan, M. and Xu, Z. (2017) A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 7, Article ID: 1601424.
|
[22]
|
Chi, S.S., Qi, X.G., Hu, Y.S. and Fan, L.Z. (2018) D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes. Advanced Energy Materials, 8, Article ID: 1702764.
|
[23]
|
Ma, L., Cui, J., Yao, S., Liu, X., Luo, Y., Shen, X. and Kim, J.K. (2020) Dendrite-Free Lithium Metal and Sodium Metal Batteries. Energy Storage Materials, 27, 522-554. https://doi.org/10.1016/j.ensm.2019.12.014
|
[24]
|
Yao, W., Zou, P., Wang, M., Zhan, H., Kang, F. and Yang, C. (2021) Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews, 4, 601-631. https://doi.org/10.1007/s41918-021-00106-6
|
[25]
|
Zhao, Y., Goncharova, L.V., Zhang, Q., Kaghazchi, P., Sun, Q., Lushington, A., Wang, B., Li, R. and Sun, X. (2017) Inorganic—Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. Nano Letters, 17, 5653-5659. https://doi.org/10.1021/acs.nanolett.7b02464
|
[26]
|
Wu, W., Hou, S., Zhang, C. and Zhang, L. (2020) A Dendrite-free Na—Na2S—Carbon Hybrid toward a Highly Stable and Superior Sodium Metal Anode. ACS Applied Materials & Interfaces, 12, 27300-27306.
https://doi.org/10.1021/acsami.0c07407
|
[27]
|
Tang, S., Qiu, Z., Wang, X.Y., Gu, Y., Zhang, X.G., Wang, W.W., Yan, J.W., Zheng, M.S., Dong, Q.F. and Mao, B.W. (2018) A Room-Temperature Sodium Metal Anode Enabled by a Sodiophilic Layer. Nano Energy, 48, 101-106.
https://doi.org/10.1016/j.nanoen.2018.03.039
|
[28]
|
Li, Y., Lu, Y., Adelhelm, P., Titirici, M.M. and Hu, Y.S. (2019) Intercalation Chemistry of Graphite: Alkali Metal Ions and beyond. Chemical Society Reviews, 48, 4655-4687. https://doi.org/10.1039/C9CS00162J
|
[29]
|
Perveen, T., Siddiq, M., Shahzad, N., Ihsan, R., Ahmad, A. and Shahzad, M.I. (2020) Prospects in Anode Materials for Sodium ion Batteries—A Review. Renewable and Sustainable Energy Reviews, 119, Article ID: 109549.
https://doi.org/10.1016/j.rser.2019.109549
|
[30]
|
Balogun, M.S., Luo, Y., Qiu, W., Liu, P. and Tong, Y. (2016) A Review of Carbon Materials and Their Composites with Alloy Metals for Sodium Ion Battery Anodes. Carbon, 98, 162-178. https://doi.org/10.1016/j.carbon.2015.09.091
|
[31]
|
Zhang, Y., Xia, X., Liu, B., Deng, S., Xie, D., Liu, Q., Wang, Y., Wu, J., Wang, X. and Tu, J. (2019) Multiscale Graphene-Based Materials for Applications in Sodium Ion Batteries. Advanced Energy Materials, 9, Article ID: 1803342.
https://doi.org/10.1002/aenm.201803342
|
[32]
|
Wang, H., Wang, C., Matios, E. and Li, W. (2017) Critical Role of Ultrathin Graphene Films with Tunable Thickness in Enabling Highly Stable Sodium Metal Anodes. Nano Letters, 17, 6808-6815.
https://doi.org/10.1021/acs.nanolett.7b03071
|
[33]
|
Sun, B., Li, P., Zhang, J., Wang, D., Munroe, P., Wang, C., Notten, P.H.L. and Wang, G. (2018) Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries. Advanced Materials, 30, e1801334.
|
[34]
|
Zhao, Y., Yang, X., Kuo, L.Y., Kaghazchi, P., Sun, Q., Liang, J., Wang, B., Lushington, A., Li, R., Zhang, H. and Sun, X. (2018) High Capacity, Dendrite-Free Growth, and Minimum Volume Change Na Metal Anode. Small, 14, Article ID: 1703717. https://doi.org/10.1002/smll.201703717
|
[35]
|
Li, Y., Chen, M., Liu, B., Zhang, Y., Liang, X. and Xia, X. (2020) Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage. Advanced Energy Materials, 10, Article ID: 2000927.
|
[36]
|
Yuan, X., Chen, S., Li, J., Xie, J., Yan, G., Liu, B., Li, X., Li, R., Pan, L. and Mai, W. (2021) Understanding the Improved Performance of Sulfur-Doped Interconnected Carbon Microspheres for Na-Ion Storage. Carbon Energy, 3, 615-626. https://doi.org/10.1002/cey2.98
|
[37]
|
Guo, Q., Sun, S., Kim, K.I., Zhang, H., Liu, X., Yan, C. and Xia, H. (2020) A Novel One-Step Reaction Sodium-Sulfur Battery with High Areal Sulfur Loading on Hierarchical Porous Carbon Fiber. Carbon Energy, 3, 440-448.
https://doi.org/10.1002/cey2.86
|
[38]
|
Lu, Q., Omar, A., Ding, L., Oswald, S., Hantusch, M., Giebeler, L., Nielsch, K. and Mikhailova, D. (2021) A Facile Method to Stabilize Sodium Metal Anodes towards High-Performance Sodium Batteries. Journal of Materials Chemistry A, 9, 9038-9047. https://doi.org/10.1039/D1TA00066G
|
[39]
|
Zhu, M., Zhang, Y., Yu, F., Huang, Z., Zhang, Y., Li, L., Wang, G., Wen, L., Liu, H.K. and Dou, S.X. (2020) Stable Sodium Metal Anode Enabled by an Interface Protection Layer Rich in Organic Sulfide Salt. Nano Letters, 21, 619-627. https://doi.org/10.1021/acs.nanolett.0c04158
|
[40]
|
Meng, X., Yang, X.Q. and Sun, X. (2012) Emerging Applications of Atomic Layer Deposition for Lithium-Ion Battery Studies. Advanced Materials, 24, 3589-3615. https://doi.org/10.1002/adma.201200397
|
[41]
|
Liu, J. and Sun, X. (2014) Elegant Design of Electrode and Electrode/Electrolyte Interface in Lithium-Ion Batteries by Atomic Layer Deposition. Nanotechnology, 26, Article ID: 024001. https://doi.org/10.1088/0957-4484/26/2/024001
|
[42]
|
Luo, W., Lin, C.F., Zhao, O., Noked, M., Zhang, Y., Rubloff, G.W. and Hu, L. (2017) Ultrathin Surface Coating Enables the Stable Sodium Metal Anode. Advanced Energy Materials, 7, Article ID: 1601526.
|
[43]
|
Zhao, Y., Goncharova, L.V., Lushington, A., Sun, Q., Yadegari, H., Wang, B., Xiao, W., Li, R. and Sun, X. (2017) Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition. Advanced Material, 29, Article ID: 1606663.
|
[44]
|
Miao, X., Di, H., Ge, X., Zhao, D., Wang, P., Wang, R., Wang, C. and Yin, L. (2020) AlF3-Modified Anode-Electrolyte Interface for Effective Na Dendrites Restriction in NASICON-Based Solid-State Electrolyte. Energy Storage Materials, 30,170-178. https://doi.org/10.1016/j.ensm.2020.05.011
|
[45]
|
Kim, Y.J., Lee, H., Noh, H., Lee, J., Kim, S., Ryou, M.H., Lee, Y.M. and Kim, H.T. (2017) Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic—Organic Composite Protective Layer. ACS Applied Materials & Interfaces, 9, 6000-6006. https://doi.org/10.1021/acsami.6b14437
|
[46]
|
Wang, S., Jie, Y., Sun, Z., Cai, W., Chen, Y., Huang, F., Liu, Y., Li, X., Du, R. and Cao, R. (2020) An Implantable Artificial Protective Layer Enables Stable Sodium Metal Anodes. ACS Applied Energy Materials, 3, 8688-8694.
https://doi.org/10.1021/acsaem.0c01260
|
[47]
|
Lee, B., Paek, E., Mitlin, D. and Lee, S.W. (2019) Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews, 119, 5416-5460. https://doi.org/10.1021/acs.chemrev.8b00642
|
[48]
|
Sun, B., Xiong, P., Maitra, U., Langsdorf, D., Yan, K., Wang, C., Janek, J., Schroder, D. and Wang, G. (2020) Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries. Advanced Materials, 32, e1903891.
|
[49]
|
Rodriguez, R., Loeffler, K.E., Nathan, S.S., Sheavly, J.K., Dolocan, A., Heller, A. and Mullins, C.B. (2017) In situ Optical Imaging of Sodium Electrodeposition: Effects of Fluoroethylene Carbonate. ACS Energy Letters, 2, 2051-2057.
https://doi.org/10.1021/acsenergylett.7b00500
|
[50]
|
Lee, Y., Lee, J., Lee, J., Kim, K., Cha, A., Kang, S., Wi, T., Kang, S.J., Lee, H.W. and Choi, N.S. (2018) Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(Fluorosulfonyl)Imide Enables High-Performance Sodium Metal Electrodes. ACS Applied Materials & Interfaces, 10, 15270-15280. https://doi.org/10.1021/acsami.8b02446
|
[51]
|
Fan, J.J., Dai, P., Shi, C.G., Wen, Y., Luo, C.X., Yang, J., Song, C., Huang, L. and Sun, S.G. (2021) Synergistic Dual-Additive Electrolyte for Interphase Modification to Boost Cyclability of Layered Cathode for Sodium Ion Batteries. Advanced Functional Materials, 31, Article ID: 2010500.
|
[52]
|
Shi, Q., Zhong, Y., Wu, M., Wang, H. and Wang, H. (2018) High-Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. Angewandte Chemie, 130, 9207-9210. https://doi.org/10.1002/ange.201803049
|
[53]
|
Wei, S., Choudhury, S., Xu, J., Nath, P., Tu, Z. and Archer, L.A. (2017) Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes. Advanced Materials, 29, Article ID: 1605512.
|
[54]
|
Lu, Q., Wang, X., Omar, A. and Mikhailova, D. (2020) 3D Ni/Na Metal Anode for Improved Sodium Metal Batteries. Materials Letters, 275, Article ID: 128206. https://doi.org/10.1016/j.matlet.2020.128206
|
[55]
|
Xiong, W.S., Jiang, Y., Xia, Y., Qi, Y., Sun, W., He, D., Liu, Y. and Zhao, X.Z. (2018) A Robust 3D Host for Sodium Metal Anodes with Excellent Machinability and Cycling Stability. Chemical Communications, 54, 9406-9409.
https://doi.org/10.1039/C8CC03996H
|
[56]
|
Wang, J., Kang, Q., Yuan, J., Fu, Q., Chen, C., Zhai, Z., Liu, Y., Yan, W., Li, A. and Zhang, J. (2021) Dendrite-Free Lithium and Sodium Metal Anodes with Deep Plating/Stripping Properties for Lithium and Sodium Batteries. Carbon Energy, 3, 153-166. https://doi.org/10.1002/cey2.94
|
[57]
|
Li, Z., Zhu, K., Liu, P. and Jiao, L. (2021) 3D Confinement Strategy for Dendrite-Free Sodium Metal Batteries. Advanced Energy Materials, 12, Article ID: 2100359.
|
[58]
|
Stelmachowski, P., Duch, J., Sebastián, D., Lázaro, M.J. and Kotarba, A. (2021) Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. Materials, 14, Article 4984.
https://doi.org/10.3390/ma14174984
|
[59]
|
Sinha, S., Kim, H. and Robertson, A.W. (2021) Preparation and Application of 0D-2D Nanomaterial Hybrid Heterostructures for Energy Applications. Materials Today Advances, 12, Article ID: 100169.
https://doi.org/10.1016/j.mtadv.2021.100169
|
[60]
|
Luo, W., Zhang, Y., Xu, S., Dai, J., Hitz, E., Li, Y., Yang, C., Chen, C., Liu, B. and Hu, L. (2017) Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. Nano Letters, 17, 3792-3797. https://doi.org/10.1021/acs.nanolett.7b01138
|
[61]
|
Li, T., Sun, J., Gao, S., Xiao, B., Cheng, J., Zhou, Y., Sun, X., Jiang, F., Yan, Z. and Xiong, S. (2021) Superior Sodium Metal Anodes Enabled by Sodiophilic Carbonized Coconut Framework with 3D Tubular Structure. Advanced Energy Materials, 11, Article ID: 2003699.
|
[62]
|
Liu, B., Lei, D., Wang, J., Zhang, Q., Zhang, Y., He, W., Zheng, H., Sa, B., Xie, Q., Peng, D.L. and Qu, B. (2020) 3D Uniform Nitrogen-Doped Carbon Skeleton for Ultra-Stable Sodium Metal Anode. Nano Research, 13, 2136-2142.
https://doi.org/10.1007/s12274-020-2820-y
|
[63]
|
Wang, T.S., Liu, Y., Lu, Y.X., Hu, Y.S. and Fan, L.Z. (2018) Dendrite-Free Na Metal Plating/Stripping onto 3D Porous Cu Hosts. Energy Storage Materials, 15, 274-281.
|
[64]
|
Lee, K., Lee, Y.J., Lee, M.J., Han, J., Lim, J., Ryu, K., Yoon, H., Kim, B.H., Kim, B.J. and Lee, S.W. (2022) A 3D Hierarchical Host with Enhanced Sodiophilicity Enabling Anode-Free Sodium-Metal Batteries. Advanced Materials, 34, Article ID: 2109767.
|
[65]
|
Dai, S., Wang, L., Cao, M., Zhong, Z., Shen, Y. and Wang, M. (2019) Design Strategies in Metal Chalcogenides Anode Materials for High-Performance Sodium-Ion Battery. Materials Today Energy, 12, 114-128.
https://doi.org/10.1016/j.mtener.2018.12.011
|
[66]
|
Wang, J.W., Liu, X.H., Mao, S.X. and Huang, J.Y. (2012) Microstructural Evolution of Tin Nanoparticles during in situ Sodium Insertion and Extraction. Nano Letters, 12, 5897-5902. https://doi.org/10.1021/nl303305c
|
[67]
|
Wang, H., Matios, E., Wang, C., Luo, J., Lu, X., Hu, X., Zhang, Y. and Li, W. (2019) Tin Nanoparticles Embedded in a Carbon Buffer Layer as Preferential Nucleation Sites for Stable Sodium Metal Anodes. Journal of Materials Chemistry A, 7, 23747-23755. https://doi.org/10.1039/C9TA05176G
|
[68]
|
Liu, Z., Yu, X.Y., Lou, X.W. and Paik, U. (2016) Sb@C Coaxial Nanotubes as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries. Energy & Environmental Science, 9, 2314-2318.
https://doi.org/10.1039/C6EE01501H
|
[69]
|
Farbod, B., Cui, K., Kalisvaart, W.P., Kupsta, M., Zahiri, B., Kohandehghan, A., Lotfabad, E.M., Li, Z., Luber, E.J. and Mitlin, D. (2014) Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys. ACS Nano, 8, 4415-4429. https://doi.org/10.1021/nn4063598
|
[70]
|
Ou, X., Yang, C., Xiong, X., Zheng, F., Pan, Q., Jin, C., Liu, M. and Huang, K. (2017) A New rGO-Overcoated Sb2Se3 Nanorods Anode for Na+ Battery: In situ X-Ray Diffraction Study on a Live Sodiation/Desodiation Process. Advanced Functional Materials, 27, Article ID: 1606242.
|
[71]
|
Ren, X., Wang, J., Zhu, D., Li, Q., Tian, W., Wang, L., Zhang, J., Miao, L., Chu, P.K. and Huo, K. (2018) Sn-C Bonding Riveted SnSe Nanoplates Vertically Grown on Nitrogen-Doped Carbon Nanobelts for High-Performance Sodium-Ion Battery Anodes. Nano Energy, 54, 322-330. https://doi.org/10.1016/j.nanoen.2018.10.019
|
[72]
|
Ding, Y., Guo, X., Qian, Y., Zhang, L., Xue, L., Goodenough, J.B. and Yu, G. (2019) A Liquid-Metal-Enabled Versatile Organic Alkali-Ion Battery. Advanced Materials, 31, Article ID: 1806956.
|
[73]
|
Wang, L., Swiatowska, J., Dai, S., Cao, M., Zhong, Z., Shen, Y. and Wang, M. (2019) Promises and Challenges of Alloy-Type and Conversion-Type Anode Materials for Sodium-Ion Batteries. Materials Today Energy, 11, 46-60.
https://doi.org/10.1016/j.mtener.2018.10.017
|
[74]
|
Shan, X., Zhong, Y., Zhang, L., Zhang, Y., Xia, X., Wang, X. and Tu, J. (2021) A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives. The Journal of Physical Chemistry C, 125, 19060-19080. https://doi.org/10.1021/acs.jpcc.1c06277
|
[75]
|
Fan, L. and Li, X. (2018) Recent Advances in Effective Protection of Sodium Metal Anode. Nano Energy, 53, 630-642.
https://doi.org/10.1016/j.nanoen.2018.09.017
|