[1]
|
Feigin, V.L., Nguyen, G., Cercy, K., et al. (2018) Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. The New England Journal of Medicine, 379, 2429-2437. https://doi.org/10.1056/NEJMoa1804492
|
[2]
|
GBD 2016 Neurology Collaborators (2019) Global, Regional, and National Burden of Neurological Disorders, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18, 459-480.
|
[3]
|
Campbell, B.C.V., De Silva, D.A., Macleod, M.R., et al. (2019) Is-chaemic Stroke. Nature Reviews Disease Primers, 5, Article No. 70. https://doi.org/10.1038/s41572-019-0118-8
|
[4]
|
Zeng, J., Li, Q., Qian, J., et al. (2022) Prevalence and Characteris-tics of MAFLD in Chinese Adults Aged 40 Years or Older: A Community-Based Study. Hepatobiliary & Pancreatic Diseases International, 21, 154-161.
https://doi.org/10.1016/j.hbpd.2022.01.006
|
[5]
|
Eslam, M., Newsome, P.N., Sarin, S.K., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209.
https://doi.org/10.1016/j.jhep.2020.03.039
|
[6]
|
Nakamura, A., Kento, O. and Takashi, S. (2020) Lipid Mediators and Sterile Inflammation in Ischemic Stroke. International Immunology, 32, 719-725. https://doi.org/10.1093/intimm/dxaa027
|
[7]
|
Hu, J., Xu, Y., He, Z., et al. (2018) Increased Risk of Cerebrovascular Accident Related to Non-Alcoholic Fatty Liver Disease: A Meta-Analysis. Oncotarget, 9, 2752-2760. https://doi.org/10.18632/oncotarget.22755
|
[8]
|
Tang, A.S.P., Chan, K.E., Quek, J., et al. (2022) Non-Alcoholic Fatty Liver Disease Increases Risk of Carotid Atherosclerosis and Ischemic Stroke: An Updated Meta-Analysis with 135,602 Individuals. Clinical and Molecular Hepatology, 28, 483-496. https://doi.org/10.3350/cmh.2021.0406
|
[9]
|
Claassen, J., Thijssen, D.H.J., Panerai, R.B. and Faraci, F.M. (2021) Regulation of Cerebral Blood Flow in Humans: Physiology and Clinical Implications of Autoregulation. Physiological Reviews, 101, 1487-1559.
https://doi.org/10.1152/physrev.00022.2020
|
[10]
|
Vidal-Gonzalez, D., Lopez-Sanchez, G.N., Concha-Rebollar, L.A., et al. (2020) Cerebral Hemodynamics in the Non-Alcoholic Fatty Liver. Annals of Hepatology, 19, 668-673. https://doi.org/10.1016/j.aohep.2020.06.006
|
[11]
|
刘嘉欣, 蔺慕会, 郭蓉, 等. 经颅多普勒超声评估急性缺血性卒中患者的动态脑血流自动调节[J]. 国际脑血管病杂志, 2022, 30(4): 297-302.
|
[12]
|
Robba, C., Goffi, A., Geera-erts, T., et al. (2019) Brain Ultrasonography: Methodology, Basic and Advanced Principles and Clinical Applications. A Narrative Review. Intensive Care Medicine, 45, 913-927.
https://doi.org/10.1007/s00134-019-05610-4
|
[13]
|
Doyle, L.M. and Wang, M.Z. (2019) Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 8, Article 727. https://doi.org/10.3390/cells8070727
|
[14]
|
Rezaie, J., Feghhi, M. and Etemadi, T. (2022) A Review on Exosomes Application in Clinical Trials: Perspective, Questions, and Challenges. Cell Communication and Signaling, 20, Article No. 145.
https://doi.org/10.1186/s12964-022-00959-4
|
[15]
|
Gurunathan, S., Kang, M.H. and Kim, J.H. (2021) A Compre-hensive Review on Factors Influences Biogenesis, Functions, Therapeutic and Clinical Implications of Exosomes. Inter-national Journal of Nanomedicine, 16, 1281-1312.
https://doi.org/10.2147/IJN.S291956
|
[16]
|
Murphy, D.E., de Jong, O.G., Brouwer, M., et al. (2019) Extracellular Vesicle-Based Therapeutics: Natural versus Engineered Targeting and Trafficking. Experimental & Molecular Medicine, 51, 1-12.
https://doi.org/10.1038/s12276-019-0223-5
|
[17]
|
Mahmoudi, A., Butler, A.E., Jamialahmadi, T., et al. (2022) The Role of Exosomal miRNA in Nonalcoholic Fatty Liver Disease. Journal of Cellular Physiology, 237, 2078-2094. https://doi.org/10.1002/jcp.30699
|
[18]
|
Ho, P.T.B., Clark, I.M. and Le, L.T.T. (2022) MicroRNA-Based Diagnosis and Therapy. International Journal of Molecular Sciences, 23, Article 7167. https://doi.org/10.3390/ijms23137167
|
[19]
|
Sun, L., Liu, X., Pan, B., et al. (2020) Serum Exosomal miR-122 as a Potential Diagnostic and Prognostic Biomarker of Colorectal Cancer with Liver Metastasis. Journal of Cancer, 11, 630-637. https://doi.org/10.7150/jca.33022
|
[20]
|
Jiang, M., Zhang, W., Zhang, R., et al. (2020) Cancer Exo-some-Derived miR-9 and miR-181a Promote the Development of Early-Stage MDSCs via Interfering with SOCS3 and PIAS3 Respectively in Breast Cancer. Oncogene, 39, 4681-4694. https://doi.org/10.1038/s41388-020-1322-4
|
[21]
|
Jiang, L., Chen, W., Ye, J., et al. (2022) Potential Role of Exo-somes in Ischemic Stroke Treatment. Biomolecules, 12, Article 115. https://doi.org/10.3390/biom12010115
|
[22]
|
Cui, J., Liu, N., Chang, Z., et al. (2020) Exosomal MicroRNA-126 from RIPC Serum Is Involved in Hypoxia Tolerance in SH-SY5Y Cells by Downregulating DNMT3B. Molecular Therapy—Nucleic Acids, 20, 649-660.
https://doi.org/10.1016/j.omtn.2020.04.008
|
[23]
|
Wang, J., Chen, S., Zhang, W., et al. (2020) Exosomes from miRNA-126-Modified Endothelial Progenitor Cells Alleviate Brain Injury and Promote Functional Recovery after Stroke. CNS Neuroscience & Therapeutics, 26, 1255-1265.
https://doi.org/10.1111/cns.13455
|
[24]
|
Geng, W., Tang, H., Luo, S., et al. (2019) Exosomes from miR-NA-126-Modified ADSCs Promotes Functional Recovery after Stroke in Rats by Improving Neurogenesis and Sup-pressing Microglia Activation. American Journal of Translational Research, 11, 780-792.
|
[25]
|
Pierantonelli, I. and Svegliati-Baroni, G. (2019) Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression from NAFLD to NASH. Transplantation, 103, e1-e13. https://doi.org/10.1097/TP.0000000000002480
|
[26]
|
Watt, M.J., Miotto, P.M., De Nardo, W. and Montgomery, M.K. (2019) The Liver as an Endocrine Organ-Linking NAFLD and In-sulin Resistance. Endocrine Reviews, 40, 1367-1393. https://doi.org/10.1210/er.2019-00034
|
[27]
|
Crewe, C. and Scherer, P.E. (2022) Intercellular and Interorgan Crosstalk through Adipocyte Extracellular Vesicles. Reviews in Endo-crine and Metabolic Disorders, 23, 61-69. https://doi.org/10.1007/s11154-020-09625-x
|
[28]
|
Zhang, H., Deng, T., Ge, S., et al. (2019) Exosome circRNA Secreted from Adipocytes Promotes the Growth of Hepatocellular Carcinoma by Targeting Deubiquitination-Related USP7. Oncogene, 38, 2844-2859.
https://doi.org/10.1038/s41388-018-0619-z
|
[29]
|
Feng, X., Tan, W., Cheng, S., et al. (2015) Upregulation of mi-croRNA-126 in Hepatic Stellate Cells May Affect Pathogenesis of Liver Fibrosis through the NF-κB Pathway. DNA and Cell Biology, 34, 470-480.
https://doi.org/10.1089/dna.2014.2760
|
[30]
|
Garcia-Martin, R., Wang, G., Brandao, B.B., et al. (2022) MicroRNA Sequence Codes for Small Extracellular Vesicle Release and Cellular Retention. Nature, 601, 446-451. https://doi.org/10.1038/s41586-021-04234-3
|
[31]
|
Zhang, L., Ouyang, P., He, G., et al. (2021) Exosomes from mi-croRNA-126 Overexpressing Mesenchymal Stem Cells Promote Angiogenesis by Targeting the PIK3R2-Mediated PI3K/Akt Signalling Pathway. Journal of Cellular and Molecular Medicine, 25, 2148-2162. https://doi.org/10.1111/jcmm.16192
|
[32]
|
任佳君, 刘路路, 惠岗, 等. 循环miRNA-126在冠心病发生发展中的作用[J]. 中国老年学杂志, 2017, 37(10): 2580-2582.
|