[1]
|
Steel, D. (2014) Retinal Detachment. BMJ Clinical Evidence, 2014, Article No. 0710.
|
[2]
|
Mitry, D., Charteris, D.G., Fleck, B.W., et al. (2010) The Epidemiology of Rhegmatogenous Retinal Detachment: Geographical Variation and Clini-cal Associations. The British Journal of Ophthalmology, 94, 678-684.
https://doi.org/10.1136/bjo.2009.157727
|
[3]
|
Chen, S.N., Lian, I.-B. and Wei, Y.J. (2016) Epidemiology and Clinical Characteristics of Rhegmatogenous Retinal Detachment in Taiwan. The British Journal of Ophthalmology, 100, 1216-1220.
https://doi.org/10.1136/bjophthalmol-2015-307481
|
[4]
|
Cibis, P.A., Becker, B., Okun, E., et al. (1962) The Use of Liquid Silicone in Retinal Detachment Surgery. Archives of Ophthalmology, 68, 590-599. https://doi.org/10.1001/archopht.1962.00960030594005
|
[5]
|
Scott, J.D. (1975) The Treatment of Massive Vitre-ous Retraction by the Separation of Pre-Retinal Membranes Using Liquid Silicone. Modern Problems in Ophthalmology, 15, 185-190.
|
[6]
|
Lund, O.E. (1968) [Silicone Oil as Vitreous Body Substitute]. Bericht über die Einundfünfzigste Zusammenkunft der Deutschen Ophthalmologischen Gesellschaft, 68, 166-169.
|
[7]
|
Leaver, P.K., Cooling, R.J., Feretis, E.B., et al. (1984) Vitrectomy and Fluid/Silicone-Oil Exchange for Giant Retinal Tears: Results at Six Months. The Brit-ish Journal of Ophthalmology, 68, 432-438. https://doi.org/10.1136/bjo.68.6.432
|
[8]
|
Watzke, R.C. (1967) Sili-cone Retinopiesis for Retinal Detachment. A Long-Term Clinical Evaluation. Archives of Ophthalmology, 77, 185-196. https://doi.org/10.1001/archopht.1967.00980020187008
|
[9]
|
McCuen 2nd, B.W., Landers III, M.B. and Machem-er, R. (1985) The Use of Silicone Oil Following Failed Vitrectomy for Retinal Detachment with Advanced Proliferative Vitreoretinopathy. Ophthalmology, 92, 1029-1034.
https://doi.org/10.1016/S0161-6420(85)33904-0
|
[10]
|
Zivojnović, R., Mertens, D.A. and Peperkamp, E. (1982) [Liquid Silicone in Amotio Surgery (II). Report on 280 Cases—Further Development of the Technic]. Klinische Monatsblätter für Augenheilkunde, 181, 444-452.
https://doi.org/10.1055/s-2008-1055269
|
[11]
|
Mondelo-García, C., Bandín-Vilar, E., García-Quintanilla, L., et al. (2021) Current Situation and Challenges in Vitreous Substitutes. Macromolecular Bioscience, 21, E2100066. https://doi.org/10.1002/mabi.202100066
|
[12]
|
Chen, Y., Kearns, V.R., Zhou, L., et al. (2021) Silicone Oil in Vitre-oretinal Surgery: Indications, Complications, New Developments and Alternative Long-Term Tamponade Agents. Acta Ophthalmologica, 99, 240-250.
https://doi.org/10.1111/aos.14604
|
[13]
|
Reumueller, A., Wassermann, L., Salas, M., et al. (2020) Morphologic and Functional Assessment of Photoreceptors after Macula-Off Retinal Detachment with Adaptive-Optics OCT and Micrope-rimetry. American Journal of Ophthalmology, 214, 72-85. https://doi.org/10.1016/j.ajo.2019.12.015
|
[14]
|
Hong, E.H., Cho, H., Kim, D.R., et al. (2020) Changes in Retinal Vessel and Retinal Layer Thickness after Vitrectomy in Reti-nal Detachment via Swept-Source OCT Angiography. Investigative Ophthalmology & Visual Science, 61, 35.
https://doi.org/10.1167/iovs.61.2.35
|
[15]
|
Martins Melo, I., Bansal, A., Naidu, S., et al. (2023) Morphologic Stages of Rhegmatogenous Retinal Detachment Assessed Using Swept-Source Oct. Ophthalmology Retina, 7, 398-405. https://doi.org/10.1016/j.oret.2022.11.013
|
[16]
|
Lorenzo-Carrero, J., Perez-Flores, I., Cid-Galano, M., et al. (2009) B-Scan Ultrasonography to Screen for Retinal Tears in Acute Symptomatic Age-Related Posterior Vitreous Detachment. Ophthalmology, 116, 94-99.
https://doi.org/10.1016/j.ophtha.2008.08.040
|
[17]
|
Ryan, J.J.R., et al. (2006) Silicone Oils: Physicochemical Prop-erties. In: Ryan, S.J., et al. (Eds.), Retina, Vol. 3, Mosby, St. Louis, 2191-2210. https://doi.org/10.1016/B978-0-323-02598-0.50135-X
|
[18]
|
Crisp, A., De Juan Jr., E. and Tiedeman, J. (1987) Ef-fect of Silicone Oil Viscosity on Emulsification. Archives of Ophthalmology, 105, 546-550. https://doi.org/10.1001/archopht.1987.01060040116047
|
[19]
|
Heidenkummer, H.P., Kampik, A. and Thierfelder, S. (1991) Emulsification of Silicone Oils with Specific Physicochemical Characteristics. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 229, 88-94. https://doi.org/10.1007/BF00172269
|
[20]
|
Scott, I.U., Flynn Jr., H.W., Murray, T.G., et al. (2005) Out-comes of Complex Retinal Detachment Repair Using 1000- vs 5000-Centistoke Silicone Oil. Archives of Ophthalmology, 123, 473-478. https://doi.org/10.1001/archopht.123.4.473
|
[21]
|
Maier, M.M., Engelmann, V., Pfrommer, S., et al. (2011) [Early Emulsification of Silicone Oil (2000 cs) in Minimally Invasive Transconjunctival Vitreoretinal Surgery]. Klinische Monatsblätter für Augenheilkunde, 228, 477-479.
https://doi.org/10.1055/s-0029-1245362
|
[22]
|
Zafar, S., Shakir, M., Mahmood, S.A., et al. (2016) Comparison of 1000-Centistoke versus 5000-Centistoke Silicone Oil in Complex Retinal Detachment Surgery. Journal of the College of Physicians and Surgeons—Pakistan: JCPSP, 26, 36-40.
|
[23]
|
Maestro, A., Santini, E., Zabiegaj, D., et al. (2015) Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Advances in Condensed Matter Physics, 2015, Article ID: 917516.
https://doi.org/10.1155/2015/917516
|
[24]
|
Joussen, A.M. and Wong, D. (2008) The Concept of Heavy Tam-ponades-Chances and Limitations. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Grae-fes Archiv für klinische und experimentelle Ophthalmologie, 246, 1217-1224. https://doi.org/10.1007/s00417-008-0861-0
|
[25]
|
Tang, M.S., Zhang, S.Q. and Ma, L.W. (2018) Comparison of Postoperative Ciliary Body Changes Associated with the Use of 23-Gauge and 20-Gauge System for Pars Plana Vitrec-tomy. BMC Ophthalmology, 18, Article No. 262.
https://doi.org/10.1186/s12886-018-0925-9
|
[26]
|
Bajgai, P., Tigari, B. and Singh, R. (2018) Outcomes of 23- and 25-Gauge Transconjunctival Sutureless Vitrectomies for Dislocated Intraocular Lenses. International Ophthalmology, 38, 2295-2301.
https://doi.org/10.1007/s10792-017-0721-1
|
[27]
|
Lubiński, W., Gosławski, W., Podborączyńska-Jodko, K., et al. (2020) Comparison of 27-Gauge versus 25-Gauge Vitrectomy Results in Patients with Epiretinal Membrane: 6-Month Follow-Up. International Ophthalmology, 40, 867-875. https://doi.org/10.1007/s10792-019-01250-1
|
[28]
|
Uy, H.S., Cabahug, V.L.O., Artiaga, J.C.M., et al. (2022) Clinical Outcomes of a Beveled Tip, Ultra-High Speed, 25-Gauge Pars Plana Vitrectomy System. BMC Ophthalmology, 22, Article No. 93.
https://doi.org/10.1186/s12886-022-02311-3
|
[29]
|
Scott, M.N. and Weng, C.Y. (2016) The Evolution of Pars Plana Vitrectomy to 27-G Microincision Vitrectomy Surgery. International Ophthalmology Clinics, 56, 97-111. https://doi.org/10.1097/IIO.0000000000000131
|
[30]
|
Charles, S., Ho, A.C., Dugel, P.U., et al. (2020) Clinical Comparison of 27-Gauge and 23-Gauge Instruments on the Outcomes of Pars Plana Vitrectomy Surgery for the Treat-ment of Vitreoretinal Diseases. Current Opinion in Ophthalmology, 31, 185-191. https://doi.org/10.1097/ICU.0000000000000659
|
[31]
|
Ung, C., Yonekawa, Y., Chung, M.M., et al. (2023) 27-Gauge Pars Plana/Plicata Vitrectomy for Pediatric Vitreoretinal Surgery. Retina (Philadelphia, PA), 43, 238-242. https://doi.org/10.1097/IAE.0000000000003662
|
[32]
|
Li, S., Li, Y., Wei, L., et al. (2023) 27-Gauge Microincision Vitrectomy Surgery Compared with 25-Gauge Microincision Vitrectomy Surgery on Wound Closure and Need for Wound Suture and Other Postoperative Parameters in the Treatment of Vitreoretinal Disease: A Meta-Analysis. Interna-tional Wound Journal, 20, 740-750.
https://doi.org/10.1111/iwj.13917
|
[33]
|
Kitagawa, Y., Shimada, H., Yukita, M., et al. (2023) Silicone Oil Injection and Removal in 27-Gauge Vitreous Surgery. International Journal of Ophthalmology, 16, 139-142. https://doi.org/10.18240/ijo.2023.01.21
|
[34]
|
Williams, R.L., Day, M., Garvey, M.J., et al. (2010) Increasing the Extensional Viscosity of Silicone Oil Reduces the Tendency for Emulsification. Retina (Philadelphia, PA), 30, 300-304. https://doi.org/10.1097/IAE.0b013e3181babe0c
|
[35]
|
Caramoy, A., Hagedorn, N., Fauser, S., et al. (2011) Devel-opment of Emulsification-Resistant Silicone Oils: Can We Go Beyond 2000 mPas Silicone Oil? Investigative Ophthal-mology & Visual Science, 52, 5432-5436.
https://doi.org/10.1167/iovs.11-7250
|
[36]
|
Romano, M.R., Ferrara, M., Nepita, I., et al. (2021) Biocompatibility of Intraocular Liquid Tamponade Agents: An Update. Eye (London, England), 35, 2699-2713. https://doi.org/10.1038/s41433-021-01596-w
|
[37]
|
Romano, M.R., Ferrara, M., Gatto, C., et al. (2020) Safety of Silicone Oils as Intraocular Medical Device: An in Vitro Cytotoxicity Study. Experimental Eye Research, 194, Article 108018. https://doi.org/10.1016/j.exer.2020.108018
|
[38]
|
Versura, P., Cellini, M., Torreggiani, A., et al. (2001) The Biocompatibility of Silicone, Fluorosilicone and Perfluorocarbon Liquids as Vitreous Tamponades. An Ultrastructural and Immunohistochemical Study. Ophthalmologica, 215, 276-283. https://doi.org/10.1159/000050874
|
[39]
|
Inoue, M., Iriyama, A., Kadonosono, K., et al. (2009) Effects of Perfluorocarbon Liquids and Silicone Oil on Human Retinal Pigment Epithelial Cells and Retinal Ganglion Cells. Retina (Philadelphia, PA), 29, 677-681.
https://doi.org/10.1097/IAE.0b013e318196fca1
|
[40]
|
Nayef, L.M., Khan, M.F. and Brook, M.A. (2015) Low Mo-lecular Weight Silicones Particularly Facilitate Human Serum Albumin Denaturation. Colloids and Surfaces B, Biointer-faces, 128, 586-593.
https://doi.org/10.1016/j.colsurfb.2015.03.013
|
[41]
|
Chen, Y., Ip, Y.L., Zhou, L., et al. (2021) What Is the Cause of Toxicity of Silicone Oil? Materials (Basel, Switzerland), 15, Article 269. https://doi.org/10.3390/ma15010269
|
[42]
|
Gonvers, M., Hornung, J.P. and De Courten, C. (1986) The Effect of Liquid Silicone on the Rabbit Retina. Histologic and Ultrastructural Study. Archives of Ophthalmology, 104, 1057-1062.
https://doi.org/10.1001/archopht.1986.01050190115049
|
[43]
|
Semeraro, F., Russo, A., Morescalchi, F., et al. (2019) Comparative Assessment of Intraocular Inflammation Following Standard or Heavy Silicone Oil Tamponade: A Prospec-tive Study. Acta Ophthalmologica, 97, E97-E102.
https://doi.org/10.1111/aos.13830
|
[44]
|
Morescalchi, F., Costagliola, C., Duse, S., et al. (2014) Heavy Silicone Oil and Intraocular Inflammation. BioMed Research International, 2014, Article ID: 574825. https://doi.org/10.1155/2014/574825
|
[45]
|
Miesfeld, J.B. and Brown, N.L. (2019) Eye Organogenesis: A Hierar-chical View of Ocular Development. Current Topics in Developmental Biology, 132, 351-393. https://doi.org/10.1016/bs.ctdb.2018.12.008
|
[46]
|
Albert, D.M., Miller, J.W., Azar, D.T., et al. (2008) Principles and Practice of Ophthalmology E-Book. Elsevier Health Sciences.
|
[47]
|
Kaufman, P.L. and Alm, A. (2003) Adler’s Physiology of the Eye. Mosby Inc., St. Louis.
|
[48]
|
Harris, A., Kagemann, L. and Cioffi, G.A. (1998) Assessment of Human Ocular Hemodynamics. Survey of Ophthalmology, 42, 509-533. https://doi.org/10.1016/S0039-6257(98)00011-3
|
[49]
|
Parver, L.M., Auker, C.R., Carpenter, D.O., et al. (1982) Choroidal Blood Flow II. Reflexive Control in the Monkey. Archives of Ophthalmology, 100, 1327-1330. https://doi.org/10.1001/archopht.1982.01030040305021
|
[50]
|
Linsenmeier, R.A. and Braun, R.D. (1992) Oxygen Distribution and Consumption in the Cat Retina during Normoxia and Hypoxemia. The Journal of General Physiology, 99, 177-197. https://doi.org/10.1085/jgp.99.2.177
|
[51]
|
Yu, D.Y., Cringle, S.J., Alder, V., et al. (1999) Intraretinal Oxygen Distribution in the Rat with Graded Systemic Hyperoxia and Hypercapnia. Investigative Ophthalmology & Visu-al Science, 40, 2082-2087.
|
[52]
|
Rieke, F. (2000) Mechanisms of Single-Photon Detection in Rod Photoreceptors. Methods in Enzymology, 316, 186-202. https://doi.org/10.1016/S0076-6879(00)16724-2
|
[53]
|
Sampath, A.P. and Rieke, F. (2004) Selective Transmission of Single Photon Responses by Saturation at the Rod-to-Rod Bipolar Synapse. Neuron, 41, 431-443. https://doi.org/10.1016/S0896-6273(04)00005-4
|
[54]
|
Röhlich, P., Van Veen, T. and Szél, A. (1994) Two Different Visual Pigments in One Retinal Cone Cell. Neuron, 13, 1159-1166. https://doi.org/10.1016/0896-6273(94)90053-1
|
[55]
|
Roorda, A., Metha, A.B., Lennie, P., et al. (2001) Packing Arrangement of the Three Cone Classes in Primate Retina. Vision Research, 41, 1291-1306. https://doi.org/10.1016/S0042-6989(01)00043-8
|
[56]
|
Cueva, J.G., Haverkamp, S., Reimer, R.J., et al. (2002) Ve-sicular Gamma-Aminobutyric Acid Transporter Expression in Amacrine and Horizontal Cells. The Journal of Compara-tive Neurology, 445, 227-237.
https://doi.org/10.1002/cne.10166
|
[57]
|
Contini, M. and Raviola, E. (2003) Gabaergic Synapses Made by a Retinal Dopaminergic Neuron. Proceedings of the National Academy of Sciences of the United States of America, 100, 1358-1363.
https://doi.org/10.1073/pnas.0337681100
|
[58]
|
Cohen-Cory, S. and Lom, B. (2004) Neurotrophic Regulation of Retinal Ganglion Cell Synaptic Connectivity: From Axons and Dendrites to Synapses. The International Journal of De-velopmental Biology, 48, 947-956.
https://doi.org/10.1387/ijdb.041883sc
|
[59]
|
Freund, K.B., Sarraf, D., Mieler, W.F., et al. (2016) The Retinal Atlas E-Book. Elsevier Health Sciences.
|
[60]
|
Shah, R., Byanju, R. and Pradhan, S. (2018) Outcomes of Silicone Oil Removal in Complex Retinal Detachment. Nepalese Journal of Ophthalmology, 10, 124-129. https://doi.org/10.3126/nepjoph.v10i2.23012
|
[61]
|
Feng, X., Li, C., Zheng, Q., et al. (2017) Risk of Silicone Oil as Vitreous Tamponade in Pars Plana Vitrectomy: A Systematic Review and Meta-Analysis. Retina (Philadelphia, PA), 37, 1989-2000.
https://doi.org/10.1097/IAE.0000000000001553
|
[62]
|
Antoun, J., Azar, G., Jabbour, E., et al. (2016) Vitreoretinal Surgery with Silicone Oil Tamponade in Primary Uncomplicated Rhegmatogenous Retinal Detachment: Clinical Out-comes and Complications. Retina (Philadelphia, PA), 36, 1906-1912. https://doi.org/10.1097/IAE.0000000000001008
|
[63]
|
Meng, L., Wei, W., Li, Y., et al. (2014) Treatment of Retinal Detachment Secondary to Macular Hole in Highly Myopic Eyes: Pars Plana Vitrectomy with Internal Limiting Membrane Peel and Silicone Oil Tamponade. Retina (Philadelphia, PA), 34, 470-476. https://doi.org/10.1097/IAE.0b013e31829d004b
|
[64]
|
Sigler, E.J., Randolph, J.C., Calzada, J.I., et al. (2014) Ana-tomical and Visual Outcomes after Two-Port Pars Plana Vitrectomy Reoperation Under Silicone Oil for Epimacular Membrane Or Recurrent Retinal Detachment. Retina (Philadelphia, PA), 34, 1939-1944. https://doi.org/10.1097/IAE.0000000000000170
|
[65]
|
Tode, J., Purtskhvanidze, K., Oppermann, T., et al. (2016) Vision Loss under Silicone Oil Tamponade. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 254, 1465-1471. https://doi.org/10.1007/s00417-016-3405-z
|
[66]
|
Newsom, R.S., Johnston, R., Sullivan, P.M., et al. (2004) Sudden Visual Loss after Removal of Silicone Oil. Retina (Philadelphia, PA), 24, 871-877. https://doi.org/10.1097/00006982-200412000-00005
|
[67]
|
Herbert, E.N., Habib, M., Steel, D., et al. (2006) Central Scotoma Associated with Intraocular Silicone Oil Tamponade Develops Before Oil Removal. Graefe’s Archive for Clin-ical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 244, 248-252. https://doi.org/10.1007/s00417-005-0076-6
|
[68]
|
Kirchhof, B., Tavakolian, U., Paulmann, H., et al. (1986) Histopathological Findings in Eyes after Silicone Oil Injection. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 224, 34-37. https://doi.org/10.1007/BF02144130
|
[69]
|
Wickham, L.J., Asaria, R.H., Alexander, R., et al. (2007) Immuno-pathology of Intraocular Silicone Oil: Retina and Epiretinal Membranes. The British Journal of Ophthalmology, 91, 258-262. https://doi.org/10.1136/bjo.2006.103549
|
[70]
|
Kaneko, H., Takayama, K., Asami, T., et al. (2017) Cyto-kine Profiling in the Sub-Silicone Oil Fluid after Vitrectomy Surgeries for Refractory Retinal Diseases. Scientific Reports, 7, Article No. 2640.
https://doi.org/10.1038/s41598-017-03124-x
|
[71]
|
Asaria, R.H., Kon, C.H., Bunce, C., et al. (2004) Silicone Oil Concentrates Fibrogenic Growth Factors in the Retro-Oil Fluid. The British Journal of Ophthalmology, 88, 1439-1442. https://doi.org/10.1136/bjo.2003.040402
|
[72]
|
Daruich, A., Matet, A., Moulin, A., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68. https://doi.org/10.1016/j.preteyeres.2017.10.006
|
[73]
|
Odrobina, D. and Laudańska-Olszewska, I. (2014) Analysis of the Time and Location of the Silicone Oil Emulsification by Spectral-Domain Optical Coherence Tomography after Silicone Oil Tamponade. BioMed Research International, 2014, Article ID: 372045. https://doi.org/10.1155/2014/372045
|
[74]
|
Dormegny, L., Jeanjean, L.C., Liu, X., et al. (2021) Visual Impairment and Macular Vascular Remodeling Secondary to Retrograde Maculopathy in Retinal Detachment Treated with Silicon Oil Tamponade. Retina (Philadelphia, PA), 41, 309-316. https://doi.org/10.1097/IAE.0000000000002812
|
[75]
|
Raczyńska, D., Mitrosz, K., Raczyńska, K., et al. (2018) The Influence of Silicone Oil on the Ganglion Cell Complex after Pars Plana Vitrectomy for Rhegmatogenous Retinal De-tachment. Current Pharmaceutical Design, 24, 3476-3493.
https://doi.org/10.2174/1381612824666180813115438
|
[76]
|
Yamada, K., Kaneko, H., Tsunekawa, T., et al. (2019) Silicone Oil-Associated Retinal Light Exposure under a Surgical Microscope. Acta Ophthalmologica, 97, E742-E746. https://doi.org/10.1111/aos.14038
|
[77]
|
Osborne, N.N., Kamalden, T.A., Majid, A.S., et al. (2010) Light Effects on Mitochondrial Photosensitizers in Relation to Retinal Degeneration. Neurochemical Research, 35, 2027-2034. https://doi.org/10.1007/s11064-010-0273-5
|
[78]
|
Dogramaci, M., Williams, K., Lee, E., et al. (2013) Foveal Light Exposure Is Increased at the Time of Removal of Silicone Oil with the Potential for Phototoxicity. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmolo-gie, 251, 35-39.
https://doi.org/10.1007/s00417-012-2033-5
|
[79]
|
Winter, M., Eberhardt, W., Scholz, C., et al. (2000) Failure of Po-tassium Siphoning by Müller Cells: A New Hypothesis of Perfluorocarbon Liquid-Induced Retinopathy. Investigative Ophthalmology & Visual Science, 41, 256-261.
|
[80]
|
Lee, J., Cho, H., Kang, M., et al. (2021) Retinal Changes before and after Silicone Oil Removal in Eyes with Rhegmatogenous Retinal Detachment Using Swept-Source Optical Coher-ence Tomography. Journal of Clinical Medicine, 10, Article 5436. https://doi.org/10.3390/jcm10225436
|
[81]
|
Xiang, W., Wei, Y., Chi, W., et al. (2020) Effect of Silicone Oil on Macular Capillary Vessel Density and Thickness. Experi-mental and Therapeutic Medicine, 19, 729-734. https://doi.org/10.3892/etm.2019.8243
|
[82]
|
Karasu, B., Erıs, E., Sonmez, O., et al. (2020) The Effect of Silicone Oil Presence Time on Macular and Choroidal Thickness with Macu-la-Off Rhegmatogenous Retinal Detachment. Journal Francais d’Ophtalmologie, 43, 626-634.
https://doi.org/10.1016/j.jfo.2019.10.017
|
[83]
|
Miller, J.B., Papakostas, T.D. and Vavvas, D.G. (2014) Complica-tions of Emulsified Silicone Oil after Retinal Detachment Repair. Seminars in Ophthalmology, 29, 312-318. https://doi.org/10.3109/08820538.2014.962181
|
[84]
|
Foulks, G.N., Hatchell, D.L., Proia, A.D., et al. (1991) His-topathology of Silicone Oil Keratopathy in Humans. Cornea, 10, 29-37. https://doi.org/10.1097/00003226-199101000-00007
|
[85]
|
Budenz, D.L., Taba, K.E., Feuer, W.J., et al. (2001) Surgical Management of Secondary Glaucoma after Pars Plana Vitrectomy and Silicone Oil Injection for Complex Retinal Detachment. Ophthalmology, 108, 1628-1632.
https://doi.org/10.1016/S0161-6420(01)00658-3
|
[86]
|
Al-Jazzaf, A.M., Netland, P.A. and Charles, S. (2005) Inci-dence and Management of Elevated Intraocular Pressure after Silicone Oil Injection. Journal of Glaucoma, 14, 40-46. https://doi.org/10.1097/01.ijg.0000145811.62095.fa
|
[87]
|
Petersen, J. and Ritzau-Tondrow, U. (1988) [Chronic Glaucoma Following Silicone Oil Implantation: A Comparison of 2 Oils of Differing Viscosity]. Fortschritte der Oph-thalmologie: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft, 85, 632-634.
|
[88]
|
Stinson, W.G. and Small, K.W. (1994) Glaucoma after Surgery on the Retina and Vitreous. Seminars in Ophthalmology, 9, 258-265. https://doi.org/10.3109/08820539409060025
|
[89]
|
Srinivasan, S., Singh, A.K., Desai, S.P., et al. (2003) Foreign Body Episcleral Granulomas Complicating Intravitreal Silicone Oil Tamponade: A Clinicopathological Study. Ophthal-mology, 110, 1837-1840.
https://doi.org/10.1016/S0161-6420(03)00571-2
|
[90]
|
Williams, R.L., Beatty, R.L., Kanal, E., et al. (1999) MR Imaging of Intraventricular Silicone: Case Report. Radiology, 212, 151-154. https://doi.org/10.1148/radiology.212.1.r99jl27151
|
[91]
|
Hruby, P.M., Poley, P.R., Terp, P.A., et al. (2013) Head-aches Secondary to Intraventricular Silicone Oil Successfully Managed with Ventriculoperitoneal Shunt. Retinal Cases & Brief Reports, 7, 288-290.
https://doi.org/10.1097/ICB.0b013e31828eeffe
|
[92]
|
Lin, X., Wang, Z., Jiang, Z., et al. (2012) Preliminary Efficacy and Safety of a Silicone Oil-Filled Foldable Capsular Vitreous Body in the Treatment of Severe Retinal Detachment. Ret-ina (Philadelphia, PA), 32, 729-741.
https://doi.org/10.1097/IAE.0b013e31822b1f80
|
[93]
|
Liu, N., Kang, L., Yu, X., et al. (2021) Preliminary Clinical Application of Foldable Capsular Vitreous Body in Severe Silicone Oil-Dependent Eyes. Annals of Palliative Medicine, 10, 10922-10929. https://doi.org/10.21037/apm-21-2554
|
[94]
|
Gao, Q., Mou, S., Ge, J., et al. (2008) A New Strategy to Replace the Natural Vitreous by A Novel Capsular Artificial Vitreous Body with Pressure-Control Valve. Eye (London, England), 22, 461-468.
https://doi.org/10.1038/sj.eye.6702875
|
[95]
|
Abu Serhan, H., Irshaidat, S., Abu Serhan, L., et al. (2023) Foldable Capsular Vitreous Body Indications, Complications, and Outcomes: A Systematic Review. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 261, 2103-2116.
https://doi.org/10.1007/s00417-023-05995-5
|
[96]
|
Li, M., Tang, Y., Li, S., et al. (2022) Foldable Capsular Vitreous Body Implantation for Complicated Retinal Detachment Caused by Severe Ocular Trauma. Retina (Philadelphia, PA), 42, 1512-1519.
https://doi.org/10.1097/IAE.0000000000003493
|
[97]
|
Ma, S., Zhao, S., Zhang, C., et al. (2022) Study on the Effi-cacy and Safety of Foldable Capsular Vitreous Body in the Severe Retinal Detachment Eyes. BMC Ophthalmology, 22, Article No. 491.
https://doi.org/10.1186/s12886-022-02729-9
|
[98]
|
Kleinberg, T.T., Tzekov, R.T., Stein, L., et al. (2011) Vitreous Substitutes: A Comprehensive Review. Survey of Ophthalmology, 56, 300-323. https://doi.org/10.1016/j.survophthal.2010.09.001
|
[99]
|
Baino, F. (2011) Towards an Ideal Biomaterial for Vitreous Replacement: Historical Overview and Future Trends. Acta Biomaterialia, 7, 921-935. https://doi.org/10.1016/j.actbio.2010.10.030
|
[100]
|
Bixler, G.D. and Bhushan, B. (2012) Biofouling: Lessons from Nature. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 370, 2381-2417. https://doi.org/10.1098/rsta.2011.0502
|
[101]
|
Wang, H., Wu, Y., Cui, C., et al. (2018) Antifouling Super Water Ab-sorbent Supramolecular Polymer Hydrogel as an Artificial Vitreous Body. Advanced Science (Weinheim, Ba-den-Wurttemberg, Germany), 5, Article 1800711.
https://doi.org/10.1002/advs.201800711
|
[102]
|
Liu, Z., Liow, S.S., Lai, S.L., et al. (2019) Retinal-Detachment Repair and Vitreous-Like-Body Reformation via a Thermogelling Polymer Endotamponade. Nature Biomedical Engineering, 3, 598-610.
https://doi.org/10.1038/s41551-019-0382-7
|