|
[1]
|
Cao, X.Q. (2016) New Materials and New Structures of Thermal Barrier Coatings. Science Press, Beijing.
|
|
[2]
|
陈光, 洪杰, 马艳红. 航空燃气涡轮发动机结构[M]. 北京: 北京航空航天大学出版社, 2010.
|
|
[3]
|
赵云松, 张迈, 戴建伟, 等. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 73-79.
|
|
[4]
|
肖力伟. 基于ECT技术的叶片热障涂层厚度测量方法研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2020.
|
|
[5]
|
温嵘, 王琦, 李璇, 等. 超快激光加工技术在航空发动机制造中的应用[J]. 电加工与模具, 2020(6): 56-59.
|
|
[6]
|
郭洪波, 宫声凯, 徐惠彬, 等. EB-PVD梯度热障涂层的制备及其热疲劳性能[J]. 金属学报, 2000, 36(7): 703-706.
|
|
[7]
|
张文毓. 热障涂层的研究进展[J]. 全面腐蚀控制, 2015, 29(10): 11-14.
|
|
[8]
|
于海涛, 牟仁德, 谢敏, 等. 热障涂层的研究现状及其制备技术[J]. 稀土, 2010(5): 83-88.
|
|
[9]
|
肖逸奇. 涡轮叶片热障涂层服役可靠性评价及其应用研究[D]: [博士学位论文]. 湘潭: 湘潭大学, 2019.
|
|
[10]
|
温嵘, 朱文宇, 麻丁龙, 等. 带热障涂层高温合金材料飞秒激光制孔工艺试验研究[J]. 激光与红外, 2021(9): 1155-1159.
|
|
[11]
|
王令双, 曹国剑, 唐光泽, 等. 热障涂层的制备及热震性能[J]. 航空材料学报, 2017, 37(2): 44-48.
|
|
[12]
|
王逸群, 宋鹏, 季强, 等. H2O和Y(O)对NiCoCrAl热障涂层高温氧化的影响[J]. 材料工程, 2017, 45(4): 65-69.
|
|
[13]
|
Zakeri, A., Bahmani, E. and Aghdam, A.S.R. (2020) Impact of MCrAlY Feedstock Powder Modification by High-Energy Ball Milling on the Microstructure and High-Temperature Oxidation Performance of HVOF-Sprayed Coatings. Surface and Coatings Technology, 395, Article ID: 125935. [Google Scholar] [CrossRef]
|
|
[14]
|
Huang, L., Sun, X.F., Guan, H.R. and Hu, Z.Q. (2006) Improvement of the Oxidation Resistance of NiCrAlY Coatings by the Addition of Rhenium. Surface and Coatings Technology, 201, 1421-1425. [Google Scholar] [CrossRef]
|
|
[15]
|
Lu, J., Chen, Y., Zhang, H., et al. (2020) Y/Hf-Doped AlCoCrFeNi High-Entropy Alloy with ultra Oxidation and Spallation Resistance. Corrosion Science, 166, Article ID: 108426. [Google Scholar] [CrossRef]
|
|
[16]
|
高元明, 马文, 冯雪英, 刘炯, 白玉, 李扬扬, 李浙锋, 李荣星, 余力. 热障涂层材料、制备技术的研究进展及失效分析[J]. 陶瓷学报, 2024(2): 248-268.
|
|
[17]
|
徐苗苗. MCrAlY粘结层的界面调控及高温氧化机理研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2024.
|
|
[18]
|
贾宜委, 王鹤峰, 王宇迪, 等. 航空发动机涡轮叶片热障涂层研究现状[J]. 表面技术, 2023, 52(11): 139-154.
|
|
[19]
|
Chen, Y., Zhao, X., Bai, M., et al. (2017) A Mechanistic Understanding on Rumpling of a NiCoCrAlY Bond Coat for Thermal Barrier Coating Applications. Acta Materialia, 128, 31-42. [Google Scholar] [CrossRef]
|
|
[20]
|
Ebach-Stahl, A., Schulz, U., Swadźba, R. and Munawar, A.U. (2021) Lifetime Improvement of EB-PVD 7YSZ TBCs by Doping of Hf or Zr in NiCoCrAlY Bond Coats. Corrosion Science, 181, Article ID: 109205. [Google Scholar] [CrossRef]
|
|
[21]
|
Meng, G., Liu, H., Liu, M.-J., et al. (2020) Large-Grain Α-Al2O3 Enabling Ultra-High Oxidation-Resistant MCrAlY Bond Coats by Surface Pre-Agglomeration Treatment. Corrosion Science, 163, Article ID: 108275. [Google Scholar] [CrossRef]
|
|
[22]
|
Ghadami, F., Sabour Rouh Aghdam, A., Zakeri, A., et al. (2020) Synergistic Effect of CeO2 and Al2O3 Nanoparticle Dispersion on the Oxidation Behavior of MCrAlY Coatings Deposited by HVOF. Ceramics International, 46, 4556-4567. [Google Scholar] [CrossRef]
|
|
[23]
|
Chen, H., Zhang, C., Xuan, J., et al. (2020) Effect of TGO Evolution and Element Diffusion on the Life Span of YSZ/Pt-Al and YSZ/NiCrAlY Coatings at High Temperature. Ceramics International, 46, 813-823. [Google Scholar] [CrossRef]
|
|
[24]
|
Tao, X.P., Wang, X.G., Zhou, Y.Z., et al. (2020) Effect of Pt-Al Bond-Coat on the Tensile Deformation and Fracture Behaviors of a Second-Generation SX Ni-Based Superalloy at Elevated Temperatures. Surface and Coatings Technology, 389, Article ID: 125640. [Google Scholar] [CrossRef]
|
|
[25]
|
Tao, X.P., Wang, X.G., Zhou, Y.Z., et al. (2021) Pt-Al Bond Coat Dependence on the Creep Stress Distribution, Deformation and Fracture Behaviour in a Second Generation Ni-Based Single Crystal Superalloy. Materials Science and Engineering: A, 805, Article ID: 140575. [Google Scholar] [CrossRef]
|
|
[26]
|
Leoni, M., Jones, R.L. and Scardi, P. (1998) Phase Stability of Scandia—Yttria-Stabilized Zirconia TBCs. Surface and Coatings Technology, 108-109, 107-113. [Google Scholar] [CrossRef]
|
|
[27]
|
Wei, X., Hou, G., An, Y., et al. (2021) Effect of Doping CeO2 and Sc2O3 on Structure, Thermal Properties and Sintering Resistance of YSZ. Ceramics International, 47, 6875-6883. [Google Scholar] [CrossRef]
|
|
[28]
|
Jeon, H., Lee, I. and Oh, Y. (2021) Changes in High-Temperature Thermal Properties of Modified YSZ with Various Rare Earth Doping Elements. Ceramics International, 48, 8177-8185. [Google Scholar] [CrossRef]
|
|
[29]
|
Raghavan, S. (2001) Thermal Properties of Zirconia Co-Doped with Trivalent and Pentavalent Oxides. Acta Materialia, 49, 169-179. [Google Scholar] [CrossRef]
|
|
[30]
|
李尧. 多元稀土元素掺杂对热障涂层隔热性能的影响[D]: [硕士学位论文]. 天津: 中国民航大学, 2021.
|
|
[31]
|
Fan, W., Bai, Y., Wang, Z.Z., et al. (2019) Effect of Point Defects on the Thermal Conductivity of Sc2O3-Y2O3 Co-Stabilized Tetragonal ZrO2 Ceramic Materials. Journal of the European Ceramic Society, 39, 2389-2396. [Google Scholar] [CrossRef]
|
|
[32]
|
Shen, Y., Leckie, R.M., Levi, C.G., et al. (2010) Low Thermal Conductivity without Oxygen Vacanciesin Equimolar YO1.5 TaO2.5 and YbO1.5 TaO2.5 Stabilized Tetragonal Zirconia Ceramics. Acta Materialia, 58, 4424-4431. [Google Scholar] [CrossRef]
|
|
[33]
|
Wang, Y. and Zhou, C. (2016) Effect of Gd2O3 on the Microstructure and Thermal Properties of Nanostructured Thermal Barrier Coatings Fabricated by Air Plasma Spraying. Progress in Natural Science: Materials International, 26, 362-367. [Google Scholar] [CrossRef]
|
|
[34]
|
Wang, Y. and Zhou, C. (2016) Microstructure and Thermal Properties of Nanostructured Gadolinia Doped Yttria-Stabilized Zirconia Thermal Barrier Coatings Produced by Air Plasma Spraying. Ceramics International, 42, 13047-13052. [Google Scholar] [CrossRef]
|
|
[35]
|
杨宏波, 刘朝辉, 丁逸栋, 等. 热障涂层的制备工艺及研究进展[J]. 电镀与涂饰, 2017, 36(14): 786-791.
|
|
[36]
|
Guo, D., Yu, Q.M. and Cen, L. (2020) Rare Metal Materials and Engineering: Effect of CMAS on Interfacial Crack and Residual Stress of Thermal Barrier Coatings. Rare Metal Materials and Engineering, 49, 2937-2947.
|
|
[37]
|
杜浩, 柴怡君, 杨雄伟. 双层氧化物生长下热障涂层的界面失效与应力演化[J]. 航空工程进展, 2023, 14(5): 109-119.
|
|
[38]
|
王士峰, 夏明岗, 刘明, 等. NiCoCrAlY/YSZ梯度涂层热力学性能的有限元模拟[J]. 航空材料学报, 2023, 43(1): 70-79.
|
|
[39]
|
Levi, C.G., Hutchinson, J.W., Vidal-Sétif, M.-H., et al. (2012) Environmental Degradation of Thermal-Barrier Coatings by Molten Deposits. MRS Bulletin, 37, 932-941. [Google Scholar] [CrossRef]
|
|
[40]
|
Walsh, W., Thole, K. and Joe, C. (2006) Effects of Sand Ingestion on the Blockage of Film-Cooling Holes. Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Volume 3: Heat Transfer, Parts A and B, Barcelona, 8-11 May 2006, 81-90. [Google Scholar] [CrossRef]
|
|
[41]
|
Stott, F., Taylor, R. and De Wet, D. (1992) The Effects of Molten Silicate Deposits on the Stability of Thermal Barrier Coatings for Turbine Applications at Very High Temperatures. 24th International SAMPE Technical Conference, Toronto, 20-22 October 1992.
|
|
[42]
|
郭磊, 张馨木, 杨硕. CMAS、CMAS NaVO3、CMAS 海盐作用下热障涂层的腐蚀行为与机理[J]. 中国表面工程, 2024, 37(1): 75-86.
|
|
[43]
|
辛会. 熔盐 CMAS混合熔体的结晶行为及其对热障涂层的腐蚀机理[D]: [硕士学位论文]. 天津: 天津大学, 2020.
|
|
[44]
|
毋敌. 热障涂层抗CMAS材料设计与腐蚀机制研究[D]: [博士学位论文]. 上海: 上海交通大学, 2021.
|
|
[45]
|
Saruhan, B., Francois, P., Fritscher, K., et al. (2004) EB-PVD Processing of Pyrochlore-Structured La2Zr2O7-Based TBCs. Surface and Coatings Technology, 182, 175-183. [Google Scholar] [CrossRef]
|
|
[46]
|
Saruhan, B. and Fritscher, K. (2002) La2Zr2O7 Based EB-PVD Thermal Barrier Coatings. In: International Symposium on Advanced Thermal Barrier Coatings and Titanium Aluminides for Gas Turbines: DLR, Institut für Werkstoff-Forschung, Köln-Porz, 180-182.
|
|
[47]
|
Lehmann, H., Pitzer, D., Pracht, G., et al. (2003) Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System. Journal of the American Ceramic Society, 86, 1338-1344. [Google Scholar] [CrossRef]
|
|
[48]
|
Lughi, V., Tolpygo, V. and Clarke, D. (2004) Microstructural Aspects of the Sintering of Thermal Barrier Coatings. Materials Science & Engineering, 368, 212-221. [Google Scholar] [CrossRef]
|
|
[49]
|
Wellman, R.G. and Nicholls, J.R. (2008) Erosion, Corrosion and Erosion-Corrosion of EB-PVD Thermal Barrier Coatings. Tribology International, 41, 657-662. [Google Scholar] [CrossRef]
|
|
[50]
|
Wellman, R., Deakin, M. and Nicholls, J. (2005) The Effect of TBC Morphology on the Erosion Rate of EB-PVD TBCs. Wear, 258, 349-356. [Google Scholar] [CrossRef]
|
|
[51]
|
Wellman, R.G., Deakin, M.J. and Nicholls, J.R. (2005) The Effect of TBC Morphology and Aging on the Erosion Rate of EB-PVD TBCs. Tribology International, 38, 798-804. [Google Scholar] [CrossRef]
|
|
[52]
|
温泉, 李亚忠, 马薏文, 等. 热障涂层技术发展[J]. 航空动力, 2021(5): 60-64.
|