[1]
|
Nan, X., Wang, C., Li, L., et al. (2023) Application of Three-Dimensional Printing Individualized Titanium Mesh in Alveolar Bone Defects with Different Terheyden Classifications: A Retrospective Case Series Study. Clinical Oral Implants Research, 34, 639-650. https://doi.org/10.1111/clr.14062
|
[2]
|
Urban, I., Montero, E., Sanz-Sánchez, I., et al. (2023) Minimal Invasiveness in Vertical Ridge Augmentation. Periodontology 2000, 91, 126-144. https://doi.org/10.1111/prd.12479
|
[3]
|
袁帅, 陈陶, 李帝泽, 黄元丁, 等. 三维打印个性化钛网在美学区牙槽骨缺损骨增量中应用的效果评估[J]. 中华口腔医学杂志, 2020, 55(11): 878-884.
|
[4]
|
张俸齐. 3D打印个性化钛网用于上颌前牙区牙槽嵴缺损修复的研究[D]: [硕士学位论文]. 大连: 大连医科大学, 2022.
|
[5]
|
Yang, Z., Liang, Q., Lu, H., et al. (2021) Clinical Outcomes of Alveolar Ridge Augmentation with in Situ Autogenous Block Bone: A Retrospective Review. The International Journal of Oral & Maxillofacial Implants, 36, 1008-1015. https://doi.org/10.11607/jomi.8662
|
[6]
|
Yuan, S., Mu, Z., Huang, Y., et al. (2020) Comparison of In-Situ Bone Ring Technique and Tent-Pole Technique for Horizontally Deficient Alveolar Ridge in the Anterior Maxilla. Clinical Implant Dentistry and Related Research, 22, 167-176. https://doi.org/10.1111/cid.12887
|
[7]
|
Gelețu, G.L., Burlacu, A., Murariu, A., et al. (2022) Customized 3D-Printed Titanium Mesh Developed for an Aesthetic Zone to Regenerate a Complex Bone Defect Resulting after a Deficient Odontectomy: A Case Report. Medicina, 58, Article 1192. https://doi.org/10.3390/medicina58091192
|
[8]
|
丁永, 王佐林. Bio-Oss参与天然骨重建机制研究进展及应用现状[J]. 口腔颌面外科杂志, 2007, 17(1): 102-105.
|
[9]
|
王慧明. 骨增量技术在牙槽骨严重缺损再造复合种植修复中的应用[J]. 中国口腔种植学杂志, 2013, 18(2): 62.
|
[10]
|
邱蔚六. 口腔颌面外科学[M]. 第6版. 北京: 人民卫生出版社, 2011: 175.
|
[11]
|
Jain, A. and Baliga, S. (2015) Rehabilitation of Avulsed Teeth in Fractured Jaws via Bone Grafting and Implant Placement: Report of Two Cases. Journal of Dentistry, 12, 542-549.
|
[12]
|
孙兆泽. IL-10/Sema3A双转染BMSCs的抑炎及促成骨分化作用及机制研究[D]: [硕士学位论文]. 济南: 山东大学, 2021.
|
[13]
|
Chen, M.-H., Wang, Y.-H., Sun, B.-J., et al. (2021) HIF-1α Activator DMOG Inhibits Alveolar Bone Resorption in Murine Periodontitis by Regulating Macrophage Polarization. International Immunopharmacology, 99, Article 107901. https://doi.org/10.1016/j.intimp.2021.107901
|
[14]
|
Cawood, J.I. and Howell, R.A. (1988) A Classification of the Edentulous Jaws. International Journal of Oral and Maxillofacial Surgery, 17, 232-236. https://doi.org/10.1016/S0901-5027(88)80047-X
|
[15]
|
Cordaro, L. and Terheyden, H. (2019) Ridge Augmentation Procedures in Implant Patients: A Staged Approach. Quintessenz Verlag, Berlin.
|
[16]
|
Cicciù, M., Pratella, U., Fiorillo, L., et al. (2023) Influence of Buccal and Palatal Bone Thickness on Post-Surgical Marginal Bone Changes Around Implants Placed in Posterior Maxilla: A Multi-Centre Prospective Study. BMC Oral Health, 23, Article 309. https://doi.org/10.1186/s12903-023-02991-3
|
[17]
|
Bai, L., Ji, P., Li, X., et al. (2019) Mechanical Characterization of 3D-Printed Individualized Ti-Mesh (Membrane) for Alveolar Bone Defects. Journal of Healthcare Engineering, 2019, Article ID: 423187. https://doi.org/10.1155/2019/4231872
|
[18]
|
Li, L., Wang, C., Li, X., et al. (2021) Research on the Dimensional Accuracy of Customized Bone Augmentation Combined with 3D-Printing Individualized Titanium Mesh: A Retrospective Case Series Study. Clinical Implant Dentistry and Related Research, 23, 5-18. https://doi.org/10.1111/cid.12966
|
[19]
|
Xie, Y., Li, S., Zhang, T., et al. (2020) Titanium Mesh for Bone Augmentation in Oral Implantology: Current Application and Progress. International Journal of Oral Science, 12, Article No. 37. https://doi.org/10.1038/s41368-020-00107-z
|
[20]
|
Seiler, M., Peetz, M., Hartmann, A., et al. (2018) Individualized CAD/CAM-Produced Titanium Scaffolds for Alveolar Bone Augmentation: A Retrospective Analysis of Dehiscence Events in Relation to Demographic and Surgical Parameters. Journal of Oral Science & Rehabilitation, 4, 38-46.
|
[21]
|
Chiapasco, M., Casentini, P., Tommasato, G., et al. (2021) Customized CAD/CAM Titanium Meshes for the Guided Bone Regeneration of Severe Alveolar Ridge Defects: Preliminary Results of a Retrospective Clinical Study in Humans. Clinical Oral Implants Research, 32, 498-510. https://doi.org/10.1111/clr.13720
|
[22]
|
Ciocca, L., Lizio, G., Baldissara, P., et al. (2018) Prosthetically CAD-CAM-Guided Bone Augmentation of Atrophic Jaws Using Customized Titanium Mesh: Preliminary Results of an Open Prospective Study. The Journal of Oral Implantology, 44, 131-137. https://doi.org/10.1563/aaid-joi-D-17-00125
|
[23]
|
Cucchi, A., Bianchi, A., Calamai, P., et al. (2020) Clinical and Volumetric Outcomes after Vertical Ridge Augmentation Using Computer-Aided-Design/Computer-Aided Manufacturing (CAD/CAM) Customized Titanium Meshes: A Pilot Study. BMC Oral Health, 20, Article No. 219. https://doi.org/10.1186/s12903-020-01205-4
|
[24]
|
Dellavia, C., Canciani, E., Pellegrini, G., et al. (2021) Histological Assessment of Mandibular Bone Tissue after Guided Bone Regeneration with Customized Computer-Aided Design/Computer-Assisted Manufacture Titanium Mesh in Humans: A Cohort Study. Clinical Implant Dentistry and Related Research, 23, 600-611. https://doi.org/10.1111/cid.13025
|
[25]
|
Majewski, P. (2022) The Ti-Mesh Technique: Guided Bone Regeneration for Three-Dimensional Augmentations. Clinical Aspects: A Case Series. The International Journal of Periodontics & Restorative Dentistry, 42, 145-153. https://doi.org/10.11607/prd.5692
|
[26]
|
Lizio, G., Pellegrino, G., Corinaldesi, G., et al. (2022) Guided Bone Regeneration Using Titanium Mesh to Augment 3-Dimensional Alveolar Defects Prior to Implant Placement. A Pilot Study. Clinical Oral Implants Research, 33, 607-621. https://doi.org/10.1111/clr.13922
|
[27]
|
Hofferber, C.E., Beck, J.C., Liacouras, P.C., et al. (2020) Volumetric Changes in Edentulous Alveolar Ridge Sites Utilizing Guided Bone Regeneration and a Custom Titanium Ridge Augmentation Matrix (CTRAM): A Case Series Study. International Journal of Implant Dentistry, 6, Article No. 83. https://doi.org/10.1186/s40729-020-00269-9
|
[28]
|
Atef, M., Tarek, A., Shaheen, M., et al. (2020) Horizontal Ridge Augmentation Using Native Collagen Membrane vs Titanium Mesh in Atrophic Maxillary Ridges: Randomized Clinical Trial. Clinical Implant Dentistry and Related Research, 22, 156-166. https://doi.org/10.1111/cid.12892
|
[29]
|
Hartmann, A., Hildebrandt, H., Younan, Z., et al. (2022) Long-Term Results in Three-Dimensional, Complex Bone Augmentation Procedures with Customized Titanium Meshes. Clinical Oral Implants Research, 33, 1171-1181. https://doi.org/10.1111/clr.14000
|
[30]
|
Poli, P.P., Beretta, M., Cicciù, M., et al. (2014) Alveolar Ridge Augmentation with Titanium Mesh. A Retrospective Clinical Study. The Open Dentistry Journal, 8, 148-158. https://doi.org/10.2174/1874210601408010148
|
[31]
|
Zhou, M., Li, S.-Y., Terheyden, H., et al. (2018) Particulate Coral Hydroxyapatite Sheltered by Titanium Mesh for Localized Alveolar Rehabilitation after Onlay Graft Failure: A Case Report. The Journal of Oral Implantology, 44, 147-152. https://doi.org/10.1563/aaid-joi-D-17-00109
|
[32]
|
Zhou, L., Su, Y., Wang, J., et al. (2022) Effect of Exposure Rates with Customized versus Conventional Titanium Mesh on Guided Bone Regeneration: Systematic Review and Meta-Analysis. The Journal of Oral Implantology, 48, 339-346. https://doi.org/10.1563/aaid-joi-D-20-00200
|
[33]
|
Hartmann, A. and Seiler, M. (2020) Minimizing Risk of Customized Titanium Mesh Exposures—A Retrospective Analysis. BMC Oral Health, 20, Article No. 36. https://doi.org/10.1186/s12903-020-1023-y
|
[34]
|
Hartmann, A., Hildebrandt, H., Schmohl, J.U., et al. (2019) Evaluation of Risk Parameters in Bone Regeneration Using a Customized Titanium Mesh: Results of a Clinical Study. Implant Dentistry, 28, 543-550. https://doi.org/10.1097/ID.0000000000000933
|
[35]
|
Sumida, T., Otawa, N., Kamata, Y.U., et al. (2015) Custom-Made Titanium Devices as Membranes for Bone Augmentation in Implant Treatment: Clinical Application and the Comparison with Conventional Titanium Mesh. Journal of Cranio-Maxillo-Facial Surgery, 43, 2183-2188. https://doi.org/10.1016/j.jcms.2015.10.020
|
[36]
|
Jeng, M.D. and Chiang, C.P. (2020) Autogenous Bone Grafts and Titanium Mesh-Guided Alveolar Ridge Augmentation for Dental Implantation. Journal of Dental Sciences, 15, 243-248. https://doi.org/10.1016/j.jds.2020.06.012
|
[37]
|
李林芝, 陈丹, 黄元丁, 等. 三维打印个性化钛网联合引导骨再生术修复牙槽骨缺损的临床初探[J]. 中华口腔医学杂志, 2019, 54(9): 623-627.
|
[38]
|
Seiler, M., Kämmerer, P.W., Peetz, M., et al. (2018) Customized Lattice Structure in Reconstruction of Three-Dimensional Alveolar Defects. International Journal of Computerized Dentistry, 21, 261-267.
|
[39]
|
Sagheb, K., Schiegnitz, E., Moergel, M., et al. (2017) Clinical Outcome of Alveolar Ridge Augmentation with Individualized CAD-CAM-Produced Titanium Mesh. International Journal of Implant Dentistry, 3, Article No. 36. https://doi.org/10.1186/s40729-017-0097-z
|
[40]
|
Stevens, M.R., Emam, H.A., Alaily, M.E., et al. (2010) Implant Bone Rings. One-Stage Three-Dimensional Bone Transplant Technique: A Case Report. Journal of Oral Implantology, 36, 69-74. https://doi.org/10.1563/AAID-JOI-D-09-00029
|
[41]
|
汪媛婧, 欧国敏. 骨环技术在口腔种植中应用研究进展[J]. 中国实用口腔科杂志, 2023, 16(4): 493-497.
|
[42]
|
Nkenke, E. and Neukam, F.W. (2014) Autogenous Bone Harvesting and Grafting in Advanced Jaw Resorption: Morbidity, Resorption and Implant Survival. European Journal of Oral Implantology, 7, S203-S217.
|
[43]
|
Misch, C.M. (2011) Maxillary Autogenous Bone Grafting. Oral and Maxillofacial Surgery Clinics of North America, 23, 229-238. https://doi.org/10.1016/j.coms.2011.01.003
|
[44]
|
Omara, M., Abdelwahed, N., Ahmed, M., et al. (2016) Simultaneous Implant Placement with Ridge Augmentation Using an Autogenous Bone Ring Transplant. International Journal of Oral and Maxillofacial Surgery, 45, 535-544. https://doi.org/10.1016/j.ijom.2015.11.001
|
[45]
|
Chandra, R.V., Shivateja, K. and Reddy, A.A. (2019) Autogenous Bone Ring Transplant vs Autologous Growth Factor-Enriched Bone Graft Matrix in Extraction Sockets with Deficient Buccal Bone: A Comparative Clinical Study. The International Journal of Oral & Maxillofacial Implants, 34, 1424-1433. https://doi.org/10.11607/jomi.7614
|
[46]
|
Nyström, E., Ahlqvist, J., Kahnberg, K.-E., et al. (1996) Autogenous Onlay Bone Grafts Fixed with Screw Implants for the Treatment of Severely Resorbed Maxillae. Radiographic Evaluation of Preoperative Bone Dimensions, Postoperative Bone Loss, and Changes in Soft-Tissue Profile. International Journal of Oral and Maxillofacial Surgery, 25, 351-359. https://doi.org/10.1016/S0901-5027(06)80029-9
|
[47]
|
Clavero, J. and Lundgren, S. (2003) Ramus or Chin Grafts for Maxillary Sinus Inlay and Local Onlay Augmentation: Comparison of Donor Site Morbidity and Complications. Clinical Implant Dentistry and Related Research, 5, 154-160. https://doi.org/10.1111/j.1708-8208.2003.tb00197.x
|
[48]
|
Wang, J., Luo, Y. and Qu, Y., et al. (2022) Horizontal Ridge Augmentation in the Anterior Maxilla with in situ Onlay Bone Grafting: A Retrospective Cohort Study. Clinical Oral Investigations, 26, 5893-5908. https://doi.org/10.1007/s00784-022-04547-1
|
[49]
|
Najeeb, S., Zafar, M.S., Khurshid, Z., et al. (2016) Applications of Polyetheretherketone (PEEK) in Oral Implantology and Prosthodontics. Journal of Prosthodontic Research, 60, 12-19. https://doi.org/10.1016/j.jpor.2015.10.001
|
[50]
|
Giesenhagen, B., Martin, N., Donkiewicz, P., et al. (2018) Vertical Bone Augmentation in a Single-Tooth Gap with an Allogenic Bone Ring: Clinical Considerations. Journal of Esthetic and Restorative Dentistry, 30, 480-483. https://doi.org/10.1111/jerd.12392
|
[51]
|
Li, J., Li, W., Kong, M., et al. (2023) Self-Healing Hybrid Hydrogels with Sustained Bioactive Components Release for Guided Bone Regeneration. Journal of Nanobiotechnology, 21, Article No. 62. https://doi.org/10.1186/s12951-023-01811-8
|
[52]
|
Jinno, Y., Jimbo, R., Lindström, M., et al. (2018) Vertical Bone Augmentation Using Ring Technique with Three Different Materials in the Sheep Mandible Bone. The International Journal of Oral & Maxillofacial Implants, 33, 1057-1063. https://doi.org/10.11607/jomi.6278
|