1. 引言
有机电致发光二极管(OLED)是由堆叠在阳极和阴极之间的有机材料组成的自发光器件,包括空穴注入层(HIL)、空穴传输层(HTL)、发射层(EML)、电子传输层(ETL)和电子注入层(EIL) [1] [2] [3] [4] 。OLED作为下一代显示技术,因其响应时间快、对比度高、功耗低等优点而受到广泛关注。其中荧光由于三重态不能用于辐射发光只能利用单重态跃迁回基态,因此只有25%的内量子效率(IQE),外量子效率只有5% [5] 。磷光材料可以利用百分之百的能量,可是在高电压下磷光的三重态能量会大量聚集严重猝灭导致器件效率下降,此外磷光材料还含有重金属,会对环境造成污染 [6] [7] [8] [9] 。热激活延迟荧光(TADF)的出现使得OLED器件研究有了新的进展,TADF材料单重态和三重态能级十分接近,因此三重态可上转换到单重态再从单重态跃迁回基态,这样TADF材料也能在理论上利用百分百的能量 [9] [10] 。一些TADF材料还会跟荧光材料形成激基复合物,使得OLED器件性能进一步提升 [11] 。Xu等人在发光层中加入了一个混合间隔层(HS),器件最大功率效率达到了28.69 lm/W [12] 。Zhang等人通过在蓝色和红色EML之间插入4,4′-双(N-咔唑基)联苯(CBP)间隔层,研究了蓝色和红色EML之间的能量关系,研究结果表明,CBP间隔区可以加强蓝色和红色EML之间的能量传递 [13] 。Liu等人以4,4′-双(N-咔唑基)联苯(CBP)和N,N′-二(萘-1-基)-N,N′-二苯基联苯(NPB)为间隔层,制备了两种混合白光有机发光二极管,最佳器件的电流效率分别为31.0和38.9 cd/A,最大功率效率为23.9和29.1 lm/W [14] 。Yan等人在p和n型材料共掺杂发光层中加入间隔层,通过有效抑制激子猝灭和移动复合区,实现了30.7 lm/W的功率效率 [15] 。Nie等人以2,20,7,70-四(咔唑-9-基)-9,9-螺二芴(CBP)、2,9-二甲基-4,7-二苯基-1,10-菲罗啉(BCP)、4,7-二苯基-1,10-菲罗啉(Bphen)和4,40,400-三(N-咔唑基)-三苯胺(TCTA)为间隔层,制作了一系列OLED器件,其中以BCP为间隔层的器件最大电流效率为24.15 cd/A [16] 。Ying等人利用双极性材料作为间隔层通过调整厚度来调控界面激基复合物强度来增强电致发光特性 [17] 。这些论文均没有探究利用间隔层和发光层中掺杂材料产生界面激基复合物对效率的影响。
本论文中,在发光层中加入三种掺杂材料作为间隔层,无间隔层的器件作为对照,器件为DMAC-DPS的间隔层产生的界面激基复合物因其低能级可以接受来自周围的能量传递以增加能量利用率进而提升器件效率,间隔层材料的存在也可以抑制发光层中短程能量互相传递。得到的器件最大功率效率、电流效率和外量子效率分别为47.47 lm/W、45.34 cd/A和15.60%。在此基础上增加更多间隔层,进一步探究间隔层对器件效率的影响。发现过多的间隔层严重阻碍载流子进入发光层形成激子导致器件效率下降。为了抑制发光层内两种激基复合物之间短程能量互相传递,将掺杂在发光层中的DMAC-DPS分离出来单独放置,将DMAC-DPS插入发光层中,间隔层为两层的器件获得了与无间隔层的三元掺杂器件一样的效率,最大功率效率和电流效率分别为39.39 lm/W、40.74 cd/A。
2. 实验部分
2.1. 制备过程及表征
购买的玻璃基板上具有一层氧化铟锡(ITO)薄膜。将表面电阻率为15 Ω∙sq−1的玻璃基板依次用清洗剂、去离子水、酒精清洗,每次超声清洗10 min,然后在干燥箱中干燥冷却30 min。所有器件均在低于5 × 10–4 Pa的真空蒸发条件下制备。在制备过程中,所有有机材料均以0.01~1 Å/s的速率生长在衬底上。掺杂材料的蒸发速率根据掺杂浓度进行调节。实验结束后对器件进行1 h的冷却后再开始测量数据。通过计算机控制的Keithley2400数字电源和PR655光谱仪测量并记录了EL光谱等光电数据。所有的步骤都是在干燥环境下进行的。
2.2. 实验涉及材料
本论文所用的HTL、ETL材料为有机荧光材料。器件的发光层中mCBP、DMAC-DPS分别和PO-T2T形成了激基复合物。所有的材料均为商业购买,没有进行提纯,发光材料的分子结构图如图1所示。

Figure 1. The molecular structure of the main luminescent materials in this paper
图1. 本论文中主要发光材料的分子结构图



Figure 2. (a) A1~A4 device structure diagram; (b) B1~B4 device structure diagram; (c) C1~C3 device structure schematic diagram
图2. (a) A1~A4器件结构示意图;(b) B1~B4器件结构示意图;(c) C1~C3器件结构示意图
2.3. 不同间隔层材料对激基复合物效率的影响
首先,研究了EML中的层间材料对激基复合物性能的影响。在器件中,发光层由间隔层左右两边的两个混合体激基复合物组成。
器件结构为:ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCBP (6 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 11 nm)/间隔层(3 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 11 nm)/PO-T2T (10 nm)/TmPyPB (40 nm)/Liq (2 nm)/Al (100 nm)。器件A1、A2和A3分别选用mCBP、DMAC-DPS分别和PO-T2T作为间格层材料。器件A1~4的结构如图2所示。
在本论文中,间隔层的加入有如下好处:一方面,间隔层的加入使得在间隔层和发光层接触面形成界面激基复合物,界面激基复合物有助于限制激子复合区,并能够阻止激子复合区中短程三重态的能量传递。另一方面,由于间隔层的材料是三种掺杂材料中的一种,因此间隔层材料的HOMO能级和LUMO能级能够在一定程度上阻挡激子聚集过快从而猝灭导致器件效率降低。
图3(a)和图3(b)表示器件A1~A4的光电特性曲线。表1给出了所有器件的部分光电属性数据。在器件A1、A2、A3中,激子复合区分别被3 nm的间隔层mCBP、DMAC-DPS和PO-T2T一分为二。其中长程单重态激子在发光层中有效传递,但mCBP和PO-T2T间隔层由于其较低的三重态能级并没有抵挡住太多的短程三重态能量,没有抑制到短程能量传递,并且不合适的LOMO和HUMO能级一定程度上阻挡了载流子的传输使得激子复合区内载流子分布不平衡导致器件效率下降。




Figure 3. (a) Current density-voltage-luminance curve of device A1~A4; (b) the power efficiency-current density-current efficiency curve of the device A1~A4; (c) the spectra of devices A1~A4 at 10 V; (d) the spectrum of device A2 at 4~10 V voltage
图3. (a) 器件A1~A4的电流密度–电压–亮度曲线;(b) 器件A1~A4的功率效率–电流密度–电流效率曲线;(c) 器件A1~A4在10 V下的光谱;(d) 器件A2在4~10 V电压下的光谱


Figure 4. (a) The schematic diagram of the energy transfer path of device A2 and device B1~B4; (b) the energy transfer path diagram of C1~C3
图4. (a) 器件A2和器件B1~B4的能量传递路径示意图;(b) 器件C1~C3的能量传递路径示意图
PO-T2T作为电子传输材料具有很强传输电子型载流子的能力同时也有很强的阻挡空穴能力 [18] 。PO-T2T间隔层阻挡了大量的空穴型载流子进入阴极左侧的发光层使得A3器件最大电流密度下降且远低于其他三个器件,电流密度大幅度降低导致器件效率下降,因此A3亮度也是四个器件中最低的,另外PO-T2T与掺杂在发光层中的mCBP和DMAC-DPS形成两种界面激基复合物Mcbp:PO-T2T和DMAC-DPS:PO-T2T,因为在同一界面内两者之间的短程能量将会从Mcbp:PO-T2T单重态能级2.6 Ev [19] 传递且发光层内的较高的能量也会传递给较低的DMAC-DPS:PO-T2T单重态能级2.4 eV [20] ;mCBP间隔层是空穴型传输材料 [21] ,具有一定的电子传输能力,但还是阻碍了大部分电子型载流子的注入,使得复合区内载流子也存在不平衡现象,亮度也因为mCBP间隔层影响下下降,mCBP间隔层的加入与发光层中的掺杂材料PO-T2T产生了界面激基复合物Mcbp:PO-T2T,然而其较高的单重态能级2.6 eV高于发光层中激基复合物DMAC-DPS:PO-T2T单重态能级2.4 eV,能量将从高的能级传递向能量较低的能级其单重态和三重态能量都将传递给附近的激基复合物DMAC-DPS:PO-T2T,mCBP间隔层的引入并没有抑制短程能量的传递;而DMAC-DPS因其较高的三重态能级2.9 eV [22] ,抵挡住了大量三重态能量传输,并且抑制了部分短程三重态能量传递,DMAC-DPS间隔层为双极性材料既能传输电子型载流子也能传输空穴型载流子,激子也可以在间隔层内复合,进而使得激子复合区内载流子传输更加平衡,另外DMAC-DPS间隔层和旁边发光层中的掺杂材料PO-T2T形成了激基复合物DMAC-DPS:PO-T2T。该激基复合物由于较低的单重态能级2.4 eV可接受周围10 nm附近的长程能量传递 [23] ,并且大于3 nm处的短程能量也因为距离限制无法传递 [24] ,能量的更有效利用使得有DMAC-DPS间隔层器件A2比没有间隔层的OLED器件A4显示出更好的性能。
能量传递示意图如图4(a)所示。器件A2的最大功率效率和亮度分别达到了47.58 lm/W和20,210 cd/m2,其中功率效率是所有器件中最高的。如图3(c)和图3(d)所示,4~10 V的电压下非常稳定的光谱也表明器件A2发光层中较为均衡的载流子分布和稳定有效的能量传输。

Table 1. Photoelectric properties of all devices in this thesis
表1. 本论文所有器件的光电性能
2.4. 多层间隔层对TADF激基复合物的影响
在器件A2中,发现了简单的通过加入一层DMAC-DPS间隔层可以提高能量利用效率提升器件性能。为了探究间隔层能在OLED性能提升方面的起到的作用。在器件A2基础上设计了B系列器件,具体为从低到高增加了多层间隔层。器件结构分别为:
器件B1:ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCBP (6 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 11 nm)/DMAC-DPS (3 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 11 nm)/PO-T2T (10 nm)/TmPyPB (40 nm)/Liq (2 nm)/Al (100 nm)。
器件B2:ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCBP (6 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 6 nm)/DMAC-DPS (1.5 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 10 nm)/DMAC-DPS (1.5 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 6 nm)/PO-T2T (10 nm)/TmPyPB (40 nm)/Liq (2 nm)/Al (100 nm)。
器件B3:ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCBP (6 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 6 nm)/DMAC-DPS (1 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 5 nm)/DMAC-DPS (1 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 6 nm)/DMAC-DPS (1 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 5 nm) TmPyPB (40 nm)/Liq (2 nm)/Al (100 nm)。
器件B4:ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCBP (6 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 4 nm)/DMAC-DPS (1 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 4 nm)/DMAC-DPS (1 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 4 nm)/DMAC-DPS (1 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 4 nm)/DMAC-DPS (1 nm)/mCBP:DMAC-DPS:PO-T2T (50%:25%:25%, 5 m)/PO-T2T (10 nm)/TmPyPB (40 nm)/Liq (2 nm)/Al (100 nm)。
图5(a)~(d)展示了器件B1~B4的光电特性曲线。表1给出了所有器件的部分光电数据。图2(b)展示了器件B1、B2、B3和B4的具体结构。器件最大功率效率分别为47.47 lm/W、48.13 lm/W、42.16 lm/W和38.41 lm/W,对应的最大亮度分别为16,520 cd/m2、17,080 cd/m2、13,190 cd/m2和9713 cd/m2。
由图5(a)可知,器件B2亮度略微低于器件B1,器件B3次之,器件B4亮度最低。间隔层DMAC-DPS与发光层掺杂材料PO-T2T形成的界面激基复合物DMAC-DPS:PO-T2T因其低能级2.4 eV可以接受来自发光层中的能量传递。器件B1中形成的激基复合物DMAC-DPS:PO-T2T有两个界面,器件B2中形成的激基复合物DMAC-DPS:PO-T2T有四个界面,器件B3中形成的激基复合物DMAC-DPS:PO-T2T有六个界面,器件B4中形成的激基复合物DMAC-DPS:PO-T2T有八个界面。理论上应形成的激基复合物越多,长程能量传递更多更有效,但由于间隔层数的增多使得电流密度逐渐减小,大量的间隔层阻挡了空穴型和电子型载流子顺利发光层中复合形成激子,因而器件性能在发光层中间隔层数量大于两个后下降。




Figure 5. (a) Current density-voltage-luminance curves of devices B1~B4; (b) the power efficiency-current density-current efficiency curves of devices B1~B4; (c) the spectra of devices B1~B4 at 10 V; (d) spectra of device B2 at 4~10 V
图5. (a) 器件B1~B4的电流密度–电压–亮度曲线;(b) 器件B1~B4的功率效率–电流密度–电流效率曲线;(c) 器件B1~B4在10 V电压下的光谱;(d) 器件B2在4~10 V电压下的光谱
在器件B1的基础上,鉴于发光层中两种激基复合物之间还是有很多短程能量传递,将DMAC-DPS从掺杂的发光层中分离了出来,这样可极大限度的限制激基复合物中的短程能量传递。制备出一系列器件C。器件C的基本结构如图2所示。
2.5. 有效增加长程能量传递对激基复合物效率的影响
图6(a)~(c)表示器件和C1~C3的光电特性曲线。表1给出了所有器件的部分光电数据。图2(c)展示了器件C1,C2和C3的结构。最大功率效率分别为28.98 lm/W,16.89 lm/W和39.39 lm/W,对应的最大亮度分别为5129 cd/m2、5158 cd/m2和5401 cd/m2。在器件C1~C3中,C3器件的效率和亮度最高。
器件结构为:
C1: ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCBP (6 nm)/Mcbp:PO-T2T(2:1,9 nm)/DMAC-DPS (7 nm)/Mcbp:PO-T2T(2:1, 9 nm)/PO-T2T (10 nm)/TmPyPB (40 nm)/Liq (2 nm)/Al (100 nm)。
C2: ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCBP (6 nm)/DMAC-DPS (7 nm)/Mcbp:PO-T2T (2:1, 18 nm)/PO-T2T (10 nm)/TmPyPB (40 nm)/Liq (2 nm)/Al (100 nm)。
C3: ITO/HAT-CN (10 nm)/TAPC (40 nm)/mCBP (6 nm)/Mcbp:PO-T2T(2:1, 6 nm)/DMAC-DPS (3.5 nm)/Mcbp:PO-T2T (2:1, 6 nm)/DMAC-DPS (3.5 nm)/Mcbp:PO-T2T (2:1, 6 nm)/PO-T2T (10 nm)/TmPyPB (40 nm)/Liq (2 nm)/Al (100 nm)。




Figure 6. (a) Current density-voltage-luminance curve of device C1~C3; (b) the power efficiency-current density-current efficiency curve of the device C1~C3; (c) the spectra of C1~C3 at 10 V; (d) spectra of device C3 at 4~10 V
图6. (a) 器件C1~C3的电流密度–电压–亮度曲线;(b) 器件C1~C3的功率效率–电流密度–电流效率曲线;(c) 器件C1~C3在10 V电压下的光谱;(d) 器件C3在4~10 V电压下的光谱
由图6(a)可知,将TADF材料DMAC-DPS从发光层掺杂中分离出来单独放置后,器件亮度相较B系列器件亮度下降很多,原因为发光层中主要的激基复合物为Mcbp:PO-T2T,该激基复合物本征发光测出亮度仅为3227 cd/m2。发光层中器件C1中形成的激基复合物DMAC-DPS:PO-T2T有两个界面但由于7 nm的厚度,使得单层DMAC-DPS发生严重激子猝灭导致器件效率不高;而器件C2中形成的激基复合物DMAC-DPS:PO-T2T仅有一个界面,接受来自掺杂发光层中长程能量很少,并且在器件C2中单层DMAC-DPS 7 nm的厚度同样发生严重激子猝灭,因此在图6(b)中,器件C2功率效率和电流效率都是最低。在器件C3中形成的激基复合物DMAC-DPS:PO-T2T有四个界面且因为一分为二厚度仅为3.5 nm激子猝灭情况没有器件C1和C2那么严重,并且四个界面激基复合物都有效地接收到了来自周围的长程能量传递,所以在图6(b)中,器件C3显示了最高的功率效率和电流效率,分别为39.39 Im/W和40.74 cd/A。器件C3和器件A4在功率效率和电流效率数值上相无几。利用界面激基复合物接受来自体激基复合物的能量能接近三元激复合物的功率效率和电流效率,说明该策略是十分成功的。
3. 结论
本论文设计了一系列利在发光层中加入间隔层的激基复合物OLED器件。间隔层的作用为有效地利用长程能量传递,并抑制短程能量传递,且与发光层中的掺杂材料形成界面激基复合物,有效地接受来自其他高能级的长程能量传递,增加能量利用率,提高器件效率。在A系列器件中,间隔层为DMAC-DPS的激基复合物获得了最高的功率效率和电流效率,分别为47.58 Im/W和45.69 cd/A。这些电光特性远远超过了传统荧光OLED的性能。在B系列器件中,一层和两层间隔层的激基复合物显示了较高的功率效率和电流效率,间隔层与发光层中掺杂的PO-T2T形成的界面激基复合物有效地接收来自周围的能量传递,功率效率和电流效率分别为47.47 Im/W、48.13 Im/W和45.34 cd/A、47.14 cd/A。然而随着间隔层的增多器件中载流子注入变得困难,反过来影响了器件效率。C系列器件为了彻底抑制短程能量传递将发光层中的掺杂材料DMAC-DPS分离了出来单独放置,C3器件分为两层合理的位置分布使得产生的界面激基复合物接收了来自发光层中的长程能量传递,其效率和A4无间隔层器件差距很小。C3器件获得了最高的功率效率和电流效率,分别为39.39 Im/W和40.74 cd/A。C系列器件为简单结构OLED提供了一些新想法。