|
[1]
|
Lazaridis, K. and Tzartos, S.J. (2020) Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Frontiers in Immunology, 11, Article 212. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chen, J., Tian, D.-C., Zhang, C., Li, Z., Zhai, Y., Xiu, Y., et al. (2020) Incidence, Mortality, and Economic Burden of Myasthenia Gravis in China: A Nationwide Population-Based Study. The Lancet Regional Health-Western Pacific, 5, Article 100063. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Huang, X., Li, Y., Feng, H., Chen, P. and Liu, W. (2018) Clinical Characteristics of Juvenile Myasthenia Gravis in Southern China. Frontiers in Neurology, 9, Article 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hong, Y., Skeie, G.O., Zisimopoulou, P., Karagiorgou, K., Tzartos, S.J., Gao, X., et al. (2017) Retracted Article: Juvenile-Onset Myasthenia Gravis: Autoantibody Status, Clinical Characteristics and Genetic Polymorphisms. Journal of Neurology, 264, 955-962. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Vanoli, F. and Mantegazza, R. (2023) Current Drug Treatment of Myasthenia Gravis. Current Opinion in Neurology, 36, 410-415. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Howard Jr., J.F. (2017) Myasthenia Gravis: The Role of Complement at the Neuromuscular Junction. Annals of the New York Academy of Sciences, 1412, 113-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lin, F., Kaminski, H.J., Conti-Fine, B.M., Wang, W., Richmonds, C. and Medof, M.E. (2002) Markedly Enhanced Susceptibility to Experimental Autoimmune Myasthenia Gravis in the Absence of Decay-Accelerating Factor Protection. Journal of Clinical Investigation, 110, 1269-1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Mantegazza, R., Vanoli, F., Frangiamore, R. and Cavalcante, P. (2020) Complement Inhibition for the Treatment of Myasthenia Gravis. ImmunoTargets and Therapy, 9, 317-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zisimopoulou, P., Evangelakou, P., Tzartos, J., Lazaridis, K., Zouvelou, V., Mantegazza, R., et al. (2014) A Comprehensive Analysis of the Epidemiology and Clinical Characteristics of Anti-LRP4 in Myasthenia Gravis. Journal of Autoimmunity, 52, 139-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Klooster, R., Plomp, J.J., Huijbers, M.G., Niks, E.H., Straasheijm, K.R., Detmers, F.J., et al. (2012) Muscle-Specific Kinase Myasthenia Gravis IgG4 Autoantibodies Cause Severe Neuromuscular Junction Dysfunction in Mice. Brain, 135, 1081-1101. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Howard Jr., J.F., Barohn, R.J., Cutter, G.R., Freimer, M., Juel, V.C., Mozaffar, T., et al. (2013) A Randomized, Double-Blind, Placebo-Controlled Phase II Study of Eculizumab in Patients with Refractory Generalized Myasthenia Gravis. Muscle & Nerve, 48, 76-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Howard Jr., J.F., Utsugisawa, K., Benatar, M., et al. (2017) Safety and Efficacy of Eculizumab in Anti-Acetylcholine Receptor Antibody-Positive Refractory Generalised Myasthenia Gravis (REGAIN): A Phase 3, Randomised, Double-Blind, Placebo-Controlled, Multicentre Study. The Lancet Neurology, 16, 976-986. [Google Scholar] [CrossRef]
|
|
[13]
|
Monteleone, J.P.R., Gao, X., Kleijn, H.J., Bellanti, F. and Pelto, R. (2021) Eculizumab Pharmacokinetics and Pharmacodynamics in Patients with Generalized Myasthenia Gravis. Frontiers in Neurology, 12, Article 696385. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tang, G.-Q., Tang, Y., Dhamnaskar, K., Hoarty, M.D., Vyasamneni, R., Vadysirisack, D.D., et al. (2023) Zilucoplan, a Macrocyclic Peptide Inhibitor of Human Complement Component 5, Uses a Dual Mode of Action to Prevent Terminal Complement Pathway Activation. Frontiers in Immunology, 14, Article 1213920. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Mastellos, D.C., Ricklin, D. and Lambris, J.D. (2019) Clinical Promise of Next-Generation Complement Therapeutics. Nature Reviews Drug Discovery, 18, 707-729. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Howard Jr., J.F., Nowak, R.J., Wolfe, G.I., Freimer, M.L., Vu, T.H., Hinton, J.L., et al. (2020) Clinical Effects of the Self-Administered Subcutaneous Complement Inhibitor Zilucoplan in Patients with Moderate to Severe Generalized Myasthenia Gravis. JAMA Neurology, 77, 582-592. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Shirley, M. (2024) Correction: Zilucoplan: First Approval. Drugs, 84, 373. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Howard Jr., J.F., Bresch, S., Genge, A., et al. (2023) Safety and Efficacy of Zilucoplan in Patients with Generalised Myasthenia Gravis (RAISE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Study. The Lancet Neurology, 22, 395-406. [Google Scholar] [CrossRef]
|
|
[19]
|
Vu, T., Ortiz, S., Katsuno, M., Annane, D., Mantegazza, R., Beasley, K.N., et al. (2023) Ravulizumab Pharmacokinetics and Pharmacodynamics in Patients with Generalized Myasthenia Gravis. Journal of Neurology, 270, 3129-3137. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Meisel, A., Annane, D., Vu, T., Mantegazza, R., Katsuno, M., Aguzzi, R., et al. (2023) Long-Term Efficacy and Safety of Ravulizumab in Adults with Anti-Acetylcholine Receptor Antibody-Positive Generalized Myasthenia Gravis: Results from the Phase 3 CHAMPION MG Open-Label Extension. Journal of Neurology, 270, 3862-3875. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Vu, T., Meisel, A., Mantegazza, R., Annane, D., Katsuno, M., Aguzzi, R., et al. (2022) Terminal Complement Inhibitor Ravulizumab in Generalized Myasthenia Gravis. NEJM Evidence, 1, EVIDoa2100066. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Roopenian, D.C. and Akilesh, S. (2007) FcRn: The Neonatal Fc Receptor Comes of Age. Nature Reviews Immunology, 7, 715-725. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Pyzik, M., Kozicky, L.K., Gandhi, A.K. and Blumberg, R.S. (2023) The Therapeutic Age of the Neonatal Fc Receptor. Nature Reviews Immunology, 23, 415-432. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wolfe, G.I., Ward, E.S., de Haard, H., Ulrichts, P., Mozaffar, T., Pasnoor, M., et al. (2021) IgG Regulation through FcRn Blocking: A Novel Mechanism for the Treatment of Myasthenia Gravis. Journal of the Neurological Sciences, 430, Article 118074. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ulrichts, P., Guglietta, A., Dreier, T., van Bragt, T., Hanssens, V., Hofman, E., et al. (2018) Neonatal Fc Receptor Antagonist Efgartigimod Safely and Sustainably Reduces IgGs in Humans. Journal of Clinical Investigation, 128, 4372-4386. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Howard Jr., J.F., Bril, V., Burns, T.M., Mantegazza, R., Bilinska, M., Szczudlik, A., et al. (2019) Randomized Phase 2 Study of FcRn Antagonist Efgartigimod in Generalized Myasthenia Gravis. Neurology, 92, e2661-e2673 [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kiessling, P., Lledo-Garcia, R., Watanabe, S., Langdon, G., Tran, D., Bari, M., et al. (2017) The FcRn Inhibitor Rozanolixizumab Reduces Human Serum IgG Concentration: A Randomized Phase 1 Study. Science Translational Medicine, 9, eaan1208. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Bril, V., Drużdż, A., Grosskreutz, J., et al. (2023) Safety and Efficacy of Rozanolixizumab in Patients with Generalised Myasthenia Gravis (MycarinG): A Randomised, Double-Blind, Placebo-Controlled, Adaptive Phase 3 Study. The Lancet Neurology, 22, 383-394. [Google Scholar] [CrossRef]
|
|
[29]
|
Kosmas, C., Stamatopoulos, K., Stavroyianni, N., Tsavaris, N. and Papadaki, T. (2002) Anti-CD20-Based Therapy of B Cell Lymphoma: State of the Art. Leukemia, 16, 2004-2015. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Schioppo, T. and Ingegnoli, F. (2017) Current Perspective on Rituximab in Rheumatic Diseases. Drug Design, Development and Therapy, 11, 2891-2904. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hehir, M.K., Hobson-Webb, L.D., Benatar, M., Barnett, C., Silvestri, N.J., Howard, J.F., et al. (2017) Rituximab as Treatment for Anti-Musk Myasthenia Gravis. Neurology, 89, 1069-1077. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ramdas, S., Della Marina, A., Ryan, M.M., et al. (2022) Rituximab in Juvenile Myasthenia Gravis—An International Cohort Study and Literature Review. European Journal of Paediatric Neurology, 40, 5-10. [Google Scholar] [CrossRef] [PubMed]
|