|
[1]
|
Parada, C.A., De Oliveira, I.P., Gewehr, M.C.F., Machado-Neto, J.A., Lima, K., Eichler, R.A.S., et al. (2022) Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells, 11, Article 385. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dikic, I. and Elazar, Z. (2018) Mechanism and Medical Implications of Mammalian Autophagy. Nature Reviews Molecular Cell Biology, 19, 349-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lopes, V.R., Loitto, V., Audinot, J., Bayat, N., Gutleb, A.C. and Cristobal, S. (2016) Dose-Dependent Autophagic Effect of Titanium Dioxide Nanoparticles in Human Hacat Cells at Non-Cytotoxic Levels. Journal of Nanobiotechnology, 14, Article No. 22. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, N., Wei, L., Liu, D., Zhang, Q., Xia, X., Ding, L., et al. (2022) Identification and Validation of Autophagy-Related Genes in Diabetic Retinopathy. Frontiers in Endocrinology, 13, Article 867600. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Disease. Cell, 132, 27-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Rabinowitz, J.D. and White, E. (2010) Autophagy and Metabolism. Science, 330, 1344-1348. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Klionsky, D.J. (2007) Autophagy: From Phenomenology to Molecular Understanding in Less than a Decade. Nature Reviews Molecular Cell Biology, 8, 931-937. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Nakatogawa, H., Suzuki, K., Kamada, Y. and Ohsumi, Y. (2009) Dynamics and Diversity in Autophagy Mechanisms: Lessons from Yeast. Nature Reviews Molecular Cell Biology, 10, 458-467. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, X., He, S. and Ma, B. (2020) Autophagy and Autophagy-Related Proteins in Cancer. Molecular Cancer, 19, Article No. 12 [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Mizushima, N. (2007) Autophagy: Process and Function. Genes & Development, 21, 2861-2873. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., et al. (2000) A Ubiquitin-Like System Mediates Protein Lipidation. Nature, 408, 488-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., et al. (2013) Autophagosomes Form at ER-Mitochondria Contact Sites. Nature, 495, 389-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Rogov, V., Dötsch, V., Johansen, T. and Kirkin, V. (2014) Interactions between Autophagy Receptors and Ubiquitin-Like Proteins Form the Molecular Basis for Selective Autophagy. Molecular Cell, 53, 167-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lu, K., Psakhye, I. and Jentsch, S. (2014) Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family. Cell, 158, 549-563. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
White, E. and DiPaola, R.S. (2009) The Double-Edged Sword of Autophagy Modulation in Cancer. Clinical Cancer Research, 15, 5308-5316. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Jin, S. and White, E. (2007) Role of Autophagy in Cancer: Management of Metabolic Stress. Autophagy, 3, 28-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
White, E. (2012) Deconvoluting the Context-Dependent Role for Autophagy in Cancer. Nature Reviews Cancer, 12, 401-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Galluzzi, L., Pietrocola, F., Bravo-San Pedro, J.M., Amaravadi, R.K., Baehrecke, E.H., Cecconi, F., et al. (2015) Autophagy in Malignant Transformation and Cancer Progression. The EMBO Journal, 34, 856-880. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, Z., Chen, B., Wu, Y., Jin, F., Xia, Y. and Liu, X. (2010) Genetic and Epigenetic Silencing of the Beclin 1 Gene in Sporadic Breast Tumors. BMC Cancer, 10, Article No. 98. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., et al. (2003) Promotion of Tumorigenesis by Heterozygous Disruption of the Beclin 1 Autophagy Gene. Journal of Clinical Investigation, 112, 1809-1820. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kang, M.R., Kim, M.S., Oh, J.E., Kim, Y.R., Song, S.Y., Kim, S.S., et al. (2009) Frameshift Mutations of Autophag Related Genes ATG2B, ATG5, ATG9B and ATG12 in Gastric and Colorectal Cancers with Microsatellite Instability. The Journal of Pathology, 217, 702-706. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wible, D.J., Chao, H., Tang, D.G. and Bratton, S.B. (2019) ATG5 Cancer Mutations and Alternative mRNA Splicing Reveal a Conjugation Switch That Regulates ATG12-ATG5-ATG16L1 Complex Assembly and Autophagy. Cell Discovery, 5, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A. and Mizushima, N. (2008) Autophagy Is Essential for Preimplantation Development of Mouse Embryos. Science, 321, 117-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kocaturk, N.M., Akkoc, Y., Kig, C., Bayraktar, O., Gozuacik, D. and Kutlu, O. (2019) Autophagy as a Molecular Target for Cancer Treatment. European Journal of Pharmaceutical Sciences, 134, 116-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wei, H., Wei, S., Gan, B., Peng, X., Zou, W. and Guan, J. (2011) Suppression of Autophagy by FIP200 Deletion Inhibits Mammary Tumorigenesis. Genes & Development, 25, 1510-1527. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gong, C., Bauvy, C., Tonelli, G., Yue, W., Deloménie, C., Nicolas, V., et al. (2012) Beclin 1 and Autophagy Are Required for the Tumorigenicity of Breast Cancer Stem-Like/Progenitor Cells. Oncogene, 32, 2261-2272. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yue, W., Hamaï, A., Tonelli, G., Bauvy, C., Nicolas, V., Tharinger, H., et al. (2013) Inhibition of the Autophagic Flux by Salinomycin in Breast Cancer Stem-Like/Progenitor Cells Interferes with Their Maintenance. Autophagy, 9, 714-729. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Jin, M., Liu, X., Wu, Y., Lou, Y., Li, X. and Huang, G. (2022) Circular RNA EPB41 Expression Predicts Unfavorable Prognoses in NSCLC by Regulating mIR-486-3p/eIF5A Axis-Mediated Stemness. Cancer Cell International, 22, Article No. 219. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Boya, P., Codogno, P. and Rodriguez-Muela, N. (2018) Autophagy in Stem Cells: Repair, Remodelling and Metabolic Reprogramming. Development, 145, dev146506. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Auberger, P. and Puissant, A. (2017) Autophagy, a Key Mechanism of Oncogenesis and Resistance in Leukemia. Blood, 129, 547-552. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bortnik, S. and Gorski, S.M. (2017) Clinical Applications of Autophagy Proteins in Cancer: from Potential Targets to Biomarkers. International Journal of Molecular Sciences, 18, Article 1496. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Mo, S., Dai, W., Xiang, W., Li, Y., Feng, Y., Zhang, L., et al. (2019) Prognostic and Predictive Value of an Autophagy-Related Signature for Early Relapse in Stages I-III Colon Cancer. Carcinogenesis, 40, 861-870. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kimmelman, A.C. and White, E. (2017) Autophagy and Tumor Metabolism. Cell Metabolism, 25, 1037-1043. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Katheder, N.S., Khezri, R., O’Farrell, F., Schultz, S.W., Jain, A., Rahman, M.M., et al. (2017) Microenvironmental Autophagy Promotes Tumour Growth. Nature, 541, 417-420. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Katheder, N.S. and Rusten, T.E. (2017) Microenvironment and Tumors—A Nurturing Relationship. Autophagy, 13, 1241-1243. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Shen, Z., Qin, L., Xu, T., Xia, L., Wang, X., Zhang, X., et al. (2016) Chloroquine Enhances the Efficacy of Cisplatin by Suppressing Autophagy in Human Adrenocortical Carcinoma Treatment. Drug Design, Development and Therapy, 10, 1035-1045. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gong, C., Hu, C., Gu, F., Xia, Q., Yao, C., Zhang, L., et al. (2017) Co-Delivery of Autophagy Inhibitor ATG7 siRNA and Docetaxel for Breast Cancer Treatment. Journal of Controlled Release, 266, 272-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Eng, C.H., Wang, Z., Tkach, D., Toral-Barza, L., Ugwonali, S., Liu, S., et al. (2015) Macroautophagy Is Dispensable for Growth of KRAS Mutant Tumors and Chloroquine Efficacy. Proceedings of the National Academy of Sciences, 113, 182-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Karsli-Uzunbas, G., Guo, J.Y., Price, S., Teng, X., Laddha, S.V., Khor, S., et al. (2014) Autophagy Is Required for Glucose Homeostasis and Lung Tumor Maintenance. Cancer Discovery, 4, 914-927. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Napolitano, G., Johnson, J.L., He, J., Rocca, C.J., Monfregola, J., Pestonjamasp, K., et al. (2015) Impairment of Chaperone-Mediated Autophagy Leads to Selective Lysosomal Degradation Defects in the Lysosomal Storage Disease Cystinosis. EMBO Molecular Medicine, 7, 158-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., et al. (2006) Autophagy Promotes Tumor Cell Survival and Restricts Necrosis, Inflammation, and Tumorigenesis. Cancer Cell, 10, 51-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Choi, A.M.K., Ryter, S.W. and Levine, B. (2013) Autophagy in Human Health and Disease. New England Journal of Medicine, 368, 651-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, Y., Huang, J., Pang, S., Wang, H., Zhang, A., Hawley, R.G., et al. (2017) Novel and Functional ATG12 Gene Variants in Sporadic Parkinson’s Disease. Neuroscience Letters, 643, 22-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Friedman, L.G., Lachenmayer, M.L., Wang, J., He, L., Poulose, S.M., Komatsu, M., et al. (2012) Disrupted Autophagy Leads to Dopaminergic Axon and Dendrite Degeneration and Promotes Presynaptic Accumulation of α-Synuclein and LRRK2 in the Brain. The Journal of Neuroscience, 32, 7585-7593. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Sliter, D.A., Martinez, J., Hao, L., Chen, X., Sun, N., Fischer, T.D., et al. (2018) Parkin and Pink1 Mitigate Sting-Induced Inflammation. Nature, 561, 258-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Huang, J. and Klionsky, D.J. (2007) Autophagy and Human Disease. Cell Cycle, 6, 1837-1849. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wang, Y., Martinez-Vicente, M., Krüger, U., Kaushik, S., Wong, E., Mandelkow, E., et al. (2010) Synergy and Antagonism of Macroautophagy and Chaperone-Mediated Autophagy in a Cell Model of Pathological Tau Aggregation. Autophagy, 6, 182-183. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sorrentino, V., Romani, M., Mouchiroud, L., Beck, J.S., Zhang, H., D’Amico, D., et al. (2017) Enhancing Mitochondrial Proteostasis Reduces Amyloid-β Proteotoxicity. Nature, 552, 187-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Fang, E.F., Hou, Y., Palikaras, K., Adriaanse, B.A., Kerr, J.S., Yang, B., et al. (2019) Mitophagy Inhibits Amyloid-β and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer’s Disease. Nature Neuroscience, 22, 401-412. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wild, E.J. and Tabrizi, S.J. (2014) Targets for Future Clinical Trials in Huntington’s Disease: What’s in the Pipeline? Movement Disorders, 29, 1434-1445. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Qi, L., Zhang, X., Wu, J., Lin, F., Wang, J., DiFiglia, M., et al. (2012) The Role of Chaperone-Mediated Autophagy in Huntingtin Degradation. PLOS ONE, 7, e46834. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Bauer, P.O., Goswami, A., Wong, H.K., Okuno, M., Kurosawa, M., Yamada, M., et al. (2010) Harnessing Chaperone-Mediated Autophagy for the Selective Degradation of Mutant Huntingtin Protein. Nature Biotechnology, 28, 256-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Li, Z., Wang, C., Wang, Z., Zhu, C., Li, J., Sha, T., et al. (2019) Allele-Selective Lowering of Mutant HTT Protein by HTT-LC3 Linker Compounds. Nature, 575, 203-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., et al. (2006) Suppression of Basal Autophagy in Neural Cells Causes Neurodegenerative Disease in Mice. Nature, 441, 885-889. [Google Scholar] [CrossRef] [PubMed]
|