|
[1]
|
Ghobrial, I.M. (2012) Myeloma as a Model for the Process of Metastasis: Implications for Therapy. Blood, 120, 20-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hofste op Bruinink, D., Kuiper, R., van Duin, M., Cupedo, T., van der Velden, V.H.J., Hoogenboezem, R., et al. (2022) Identification of High-Risk Multiple Myeloma with a Plasma Cell Leukemia-Like Transcriptomic Profile. Journal of Clinical Oncology, 40, 3132-3150. [Google Scholar] [CrossRef]
|
|
[3]
|
Paiva, B., Paino, T., Sayagues, J., Garayoa, M., San-Segundo, L., Martín, M., et al. (2013) Detailed Characterization of Multiple Myeloma Circulating Tumor Cells Shows Unique Phenotypic, Cytogenetic, Functional, and Circadian Distribution Profile. Blood, 122, 3591-3598. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Garcés, J., Simicek, M., Vicari, M., Brozova, L., Burgos, L., Bezdekova, R., et al. (2019) Transcriptional Profiling of Circulating Tumor Cells in Multiple Myeloma: A New Model to Understand Disease Dissemination. Leukemia, 34, 589-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gonsalves, W.I., Rajkumar, S.V., Gupta, V., Morice, W.G., Timm, M.M., Singh, P.P., et al. (2014) Quantification of Clonal Circulating Plasma Cells in Newly Diagnosed Multiple Myeloma: Implications for Redefining High-Risk Myeloma. Leukemia, 28, 2060-2065. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nowakowski, G.S., Witzig, T.E., Dingli, D., Tracz, M.J., Gertz, M.A., Lacy, M.Q., et al. (2005) Circulating Plasma Cells Detected by Flow Cytometry as a Predictor of Survival in 302 Patients with Newly Diagnosed Multiple Myeloma. Blood, 106, 2276-2279. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Caers, J., Garderet, L., Kortüm, K.M., O’Dwyer, M.E., van de Donk, N.W.C.J., Binder, M., et al. (2018) European Myeloma Network Recommendations on Tools for the Diagnosis and Monitoring of Multiple Myeloma: What to Use and When. Haematologica, 103, 1772-1784. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Riebl, V., Dold, S.M., Wider, D., Follo, M., Ihorst, G., Waldschmidt, J.M., et al. (2021) Ten Color Multiparameter Flow Cytometry in Bone Marrow and Apheresis Products for Assessment and Outcome Prediction in Multiple Myeloma Patients. Frontiers in Oncology, 11, Article 708231. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Morice, W.G., Hanson, C.A., Kumar, S., Frederick, L.A., Lesnick, C.E. and Greipp, P.R. (2007) Novel Multi-Parameter Flow Cytometry Sensitively Detects Phenotypically Distinct Plasma Cell Subsets in Plasma Cell Proliferative Disorders. Leukemia, 21, 2043-2046. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Evans, L.A., Jevremovic, D., Nandakumar, B., Dispenzieri, A., Buadi, F.K., Dingli, D., et al. (2020) Utilizing Multiparametric Flow Cytometry in the Diagnosis of Patients with Primary Plasma Cell Leukemia. American Journal of Hematology, 95, 637-642. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Garcés, J., Cedena, M., Puig, N., Burgos, L., Perez, J.J., Cordon, L., et al. (2022) Circulating Tumor Cells for the Staging of Patients with Newly Diagnosed Transplant-Eligible Multiple Myeloma. Journal of Clinical Oncology, 40, 3151-3161. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bertamini, L., Oliva, S., Rota-Scalabrini, D., Paris, L., Morè, S., Corradini, P., et al. (2022) High Levels of Circulating Tumor Plasma Cells as a Key Hallmark of Aggressive Disease in Transplant-Eligible Patients with Newly Diagnosed Multiple Myeloma. Journal of Clinical Oncology, 40, 3120-3131. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jelinek, T., Bezdekova, R., Zihala, D., Sevcikova, T., Anilkumar Sithara, A., Pospisilova, L., et al. (2023) More than 2% of Circulating Tumor Plasma Cells Defines Plasma Cell Leukemia-Like Multiple Myeloma. Journal of Clinical Oncology, 41, 1383-1392. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Flores-Montero, J., Sanoja-Flores, L., Paiva, B., Puig, N., García-Sánchez, O., Böttcher, S., et al. (2017) Next Generation Flow for Highly Sensitive and Standardized Detection of Minimal Residual Disease in Multiple Myeloma. Leukemia, 31, 2094-2103. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Xia, Y., Shen, N., Zhang, R., Wu, Y., Shi, Q., Li, J., et al. (2023) High-Risk Multiple Myeloma Predicted by Circulating Plasma Cells and Its Genetic Characteristics. Frontiers in Oncology, 13, Article 1083053. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Korthals, M., Sehnke, N., Kronenwett, R., Schroeder, T., Strapatsas, T., Kobbe, G., et al. (2013) Molecular Monitoring of Minimal Residual Disease in the Peripheral Blood of Patients with Multiple Myeloma. Biology of Blood and Marrow Transplantation, 19, 1109-1115. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sanoja-Flores, L., Flores-Montero, J., Garcés, J.J., Paiva, B., Puig, N., García-Mateo, A., et al. (2018) Next Generation Flow for Minimally-Invasive Blood Characterization of MGUS and Multiple Myeloma at Diagnosis Based on Circulating Tumor Plasma Cells (CTPC). Blood Cancer Journal, 8, Article No. 117. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gupta, L., Suku, P., Dash, A., Bose, P., Sharma, P., Mallik, N., et al. (2024) Detection of Circulating Normal and Tumor Plasma Cells in Newly Diagnosed Patients of Multiple Myeloma and Their Associations with Clinical and Laboratory Parameters. Current Problems in Cancer, 48, Article 101025. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cowan, A.J., Stevenson, P.A., Libby, E.N., Becker, P.S., Coffey, D.G., Green, D.J., et al. (2018) Circulating Plasma Cells at the Time of Collection of Autologous PBSC for Transplant in Multiple Myeloma Patients Is a Negative Prognostic Factor Even in the Age of Post-Transplant Maintenance Therapy. Biology of Blood and Marrow Transplantation, 24, 1386-1391. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Galieni, P., Travaglini, F., Vagnoni, D., Ruggieri, M., Caraffa, P., Bigazzi, C., et al. (2021) The Detection of Circulating Plasma Cells May Improve the Revised International Staging System (R-ISS) Risk Stratification of Patients with Newly Diagnosed Multiple Myeloma. British Journal of Haematology, 193, 542-550. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Han, W., Jin, Y., Xu, M., Zhao, S., Shi, Q., Qu, X., et al. (2021) Prognostic Value of Circulating Clonal Plasma Cells in Newly Diagnosed Multiple Myeloma. Hematology, 26, 510-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Fernández de Larrea, C., Kyle, R., Rosiñol, L., Paiva, B., Engelhardt, M., Usmani, S., et al. (2021) Primary Plasma Cell Leukemia: Consensus Definition by the International Myeloma Working Group According to Peripheral Blood Plasma Cell Percentage. Blood Cancer Journal, 11, Article No. 192. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tiedemann, R.E., Gonzalez-Paz, N., Kyle, R.A., Santana-Davila, R., Price-Troska, T., Van Wier, S.A., et al. (2008) Genetic Aberrations and Survival in Plasma Cell Leukemia. Leukemia, 22, 1044-1052. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Usmani, S.Z., Nair, B., Qu, P., Hansen, E., Zhang, Q., Petty, N., et al. (2012) Primary Plasma Cell Leukemia: Clinical and Laboratory Presentation, Gene-Expression Profiling and Clinical Outcome with Total Therapy Protocols. Leukemia, 26, 2398-2405. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lionetti, M., Musto, P., Di Martino, M.T., Fabris, S., Agnelli, L., Todoerti, K., et al. (2013) Biological and Clinical Relevance of miRNA Expression Signatures in Primary Plasma Cell Leukemia. Clinical Cancer Research, 19, 3130-3142. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Todoerti, K., Calice, G., Trino, S., Simeon, V., Lionetti, M., Manzoni, M., et al. (2018) Global Methylation Patterns in Primary Plasma Cell Leukemia. Leukemia Research, 73, 95-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Garcı́a-Sanz, R., Orfão, A., González, M., Tabernero, M.D., Bladé, J., Moro, M.J., et al. (1999) Primary Plasma Cell Leukemia: Clinical, Immunophenotypic, Dna Ploidy, and Cytogenetic Characteristics. Blood, 93, 1032-1037. [Google Scholar] [CrossRef]
|
|
[28]
|
Bladé, J. and Kyle, R.A. (1999) Nonsecretory Myeloma, Immunoglobulin D Myeloma, and Plasma Cell Leukemia. Hematology/Oncology Clinics of North America, 13, 1259-1272. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
van de Donk, N.W.C.J., Lokhorst, H.M., Anderson, K.C. and Richardson, P.G. (2012) How I Treat Plasma Cell Leukemia. Blood, 120, 2376-2389. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kyle, R.A. (1974) Plasma Cell Leukemia. Report on 17 Cases. Archives of Internal Medicine, 133, 813-818. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sarı, M., Sarı, S. and Nalcacı, M. (2017) The Effect of Suppressed Levels of Uninvolved Immunoglobulins on the Prognosis of Symptomatic Multiple Myeloma. Turkish Journal of Hematology, 34, 131-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Sørrig, R., Klausen, T.W., Salomo, M., Vangsted, A.J., Frølund, U.C., Andersen, K.T., et al. (2017) Immunoparesis in Newly Diagnosed Multiple Myeloma Patients: Effects on Overall Survival and Progression Free Survival in the Danish Population. PLOS ONE, 12, e0188988. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Garcés, J., San-Miguel, J. and Paiva, B. (2022) Biological Characterization and Clinical Relevance of Circulating Tumor Cells: Opening the Pandora’s Box of Multiple Myeloma. Cancers, 14, Article 1430. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Pellat-Deceunynck, C., Barillé, S., Jego, G., Puthier, D., Robillard, N., Pineau, D., et al. (1998) The Absence of CD56 (NCAM) on Malignant Plasma Cells Is a Hallmark of Plasma Cell Leukemia and of a Special Subset of Multiple Myeloma. Leukemia, 12, 1977-1982. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chen, F., Hu, Y., Wang, X., Fu, S., Liu, Z. and Zhang, J. (2018) Expression of CD81 and CD117 in Plasma Cell Myeloma and the Relationship to Prognosis. Cancer Medicine, 7, 5920-5927. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
任慧娟, 苏晓甜, 陈秋雨, 等, 循环浆细胞与高危多发性骨髓瘤及免疫球蛋白基因重排的关系[J]. 临床肿瘤学杂志, 2023, 28(10): 887-892.
|
|
[37]
|
Pfeifer, S., Perez-Andres, M., Ludwig, H., Sahota, S.S. and Zojer, N. (2011) Evaluating the Clonal Hierarchy in Light-Chain Multiple Myeloma: Implications against the Myeloma Stem Cell Hypothesis. Leukemia, 25, 1213-1216. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Mangiacavalli, S., Pochintesta, L., Cocito, F., Pompa, A., Bernasconi, P., Cazzola, M., et al. (2013) Correlation between Burden of 17P13.1 Alteration and Rapid Escape to Plasma Cell Leukaemia in Multiple Myeloma. British Journal of Haematology, 162, 555-558. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Mosca, L., Musto, P., Todoerti, K., Barbieri, M., Agnelli, L., Fabris, S., et al. (2012) Genome-Wide Analysis of Primary Plasma Cell Leukemia Identifies Recurrent Imbalances Associated with Changes in Transcriptional Profiles. American Journal of Hematology, 88, 16-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yue, Z., Zhou, Y., Zhao, P., Chen, Y., Yuan, Y., Jing, Y., et al. (2017) P53 Deletion Promotes Myeloma Cells Invasion by Upregulating miR19a/CXCR5. Leukemia Research, 60, 115-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Alagpulinsa, D.A., Szalat, R.E., Poznansky, M.C. and Shmookler Reis, R.J. (2020) Genomic Instability in Multiple Myeloma. Trends in Cancer, 6, 858-873. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Neuse, C.J., Lomas, O.C., Schliemann, C., Shen, Y.J., Manier, S., Bustoros, M., et al. (2020) Genome Instability in Multiple Myeloma. Leukemia, 34, 2887-2897. [Google Scholar] [CrossRef] [PubMed]
|