|
[1]
|
Higashino, M., Ayani, Y., Terada, T., et al. (2019) Clinical Features of Poorly Differentiated Thyroid Papillary Carcinoma. Auris Nasus Larynx, 46, 437-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Londero, S.C., Krogdahl, A., Bastholt, L., et al. (2013) Papillary Thyroid Microcarcinoma in Denmark 1996-2008: A National Study of Epidemiology and Clinical Significance. Thyroid, 23, 1159-1164. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, X., Tan, J., Zheng, W., et al. (2018) A Retrospective Study of the Clinical Features in Papillary Thyroid Microcarcinoma Depending on Age. Nuclear Medicine Communications, 39, 713-719. [Google Scholar] [CrossRef]
|
|
[4]
|
Haddad, R.I., Nasr, C., Bischoff, L., et al. (2018) NCCN Guidelines Insights: Thyroid Carcinoma, Version 2.2018. Journal of the National Comprehensive Cancer Network, 16, 1429-1440. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
王得力, 张文伟, 秦作荣, 等. 接头蛋白Gab1和酪氨酸磷酸酶SHP2在50例甲状腺乳头状癌中的表达及临床意义分析[J]. 肿瘤学杂志, 2022, 28(5): 389-395.
|
|
[6]
|
Ze, Y., Zhang, X., Shao, F., Zhu, L., Shen, S., Zhu, D., et al. (2019) Active Surveillance of Low-Risk Papillary Thyroid Carcinoma: A Promising Strategy Requiring Additional Evidence. Journal of Cancer Research and Clinical Oncology, 145, 2751-2759. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, J.R., Zafereo, M.E., Wang, W., Joshu, C. and Ray, D. (2023) Association of Polygenic Score with Tumor Molecular Subtypes in Papillary Thyroid Carcinoma. The Journal of Clinical Endocrinology & Metabolism, 109, e306-e313. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lam, A.K. and Lee, K.T. (2022) Application of Immunohistochemistry in Papillary Thyroid Carcinoma. Methods in Molecular Biology, 2534, 175-195.
|
|
[9]
|
Gong, Y., Wu, W., Zou, X., et al. (2018) MiR-26a Inhibits Thyroid Cancer Cell Proliferation by Targeting ARPP19. American Journal of Cancer Research, 8, 1030-1039.
|
|
[10]
|
Karki, R., Sundaram, B., Sharma, B.R., Lee, S., Malireddi, R.K.S., Nguyen, L.N., et al. (2021) ADAR1 Restricts ZBP1-Mediated Immune Response and PANoptosis to Promote Tumorigenesis. Cell Reports, 37, Article 109858. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, L., Li, Y., Lin, C.H., Chan, T.H.M., Chow, R.K.K., Song, Y., et al. (2013) Recoding RNA Editing of AZIN1 Predisposes to Hepatocellular Carcinoma. Nature Medicine, 19, 209-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Qin, Y., Qiao, J., Chan, T.H.M., Zhu, Y., Li, F., Liu, H., et al. (2014) Adenosine-to-Inosine RNA Editing Mediated by ADARs in Esophageal Squamous Cell Carcinoma. Cancer Research, 74, 840-851. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dou, N., Yu, S., Ye, X., Yang, D., Li, Y. and Gao, Y. (2016) Aberrant Overexpression of ADAR1 Promotes Gastric Cancer Progression by Activating mTOR/p70S6K Signaling. Oncotarget, 7, 86161-86173. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Amin, E.M., Liu, Y., Deng, S., Tan, K.S., Chudgar, N., Mayo, M.W., et al. (2017) The RNA-Editing Enzyme ADAR Promotes Lung Adenocarcinoma Migration and Invasion by Stabilizing FAK. Science Signaling, 10, eaah3941. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zipeto, M.A., Court, A.C., Sadarangani, A., Delos Santos, N.P., Balaian, L., Chun, H., et al. (2016) ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis. Cell Stem Cell, 19, 177-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Fritzell, K., Xu, L., Lagergren, J. and Öhman, M. (2018) ADARs and Editing: the Role of A-to-I RNA Modification in Cancer Progression. Seminars in Cell & Developmental Biology, 79, 123-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Colombo, D.F., Burger, L., Baubec, T. and Schübeler, D. (2017) Binding of High Mobility Group a Proteins to the Mammalian Genome Occurs as a Function of AT-Content. PLOS Genetics, 13, e1007102. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wu, J., Zhang, S., Shan, J., Hu, Z., Liu, X., Chen, L., et al. (2016) Elevated HMGA2 Expression Is Associated with Cancer Aggressiveness and Predicts Poor Outcome in Breast Cancer. Cancer Letters, 376, 284-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Mansoori, B., Mohammadi, A., Ditzel, H.J., Duijf, P.H.G., Khaze, V., Gjerstorff, M.F., et al. (2021) HMGA2 as a Critical Regulator in Cancer Development. Genes, 12, Article 269. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sun, J., Sun, B., Zhu, D., et al. (2017) HMGA2 Regulates CD44 Expression to Promote Gastric Cancer Cell Motility and Sphere Formation. American Journal of Cancer Research, 7, 260-274.
|
|
[21]
|
Li, Y., Wu, D., Wang, P., Li, X. and Shi, G. (2017) miR-195 Regulates Proliferation and Apoptosis through Inhibiting the mTOR/p70S6K Signaling Pathway by Targeting HMGA2 in Esophageal Carcinoma Cells. Disease Markers, 2017, Article 8317913. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhao, Y., Jiao, Y., Li, Y., Fu, Z., Yang, Z. and He, M. (2019) Elevated High Mobility Group A2 Expression in Liver Cancer Predicts Poor Patient Survival. Revista Española de Enfermedades Digestivas, 112, 27-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ou, W., Lv, J., Zou, X., Yao, Y., Wu, J., Yang, J., et al. (2017) Propofol Inhibits Hepatocellular Carcinoma Growth and Invasion through the HMGA2-Mediated Wnt/β-Catenin Pathway. Experimental and Therapeutic Medicine, 13, 2501-2506. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wu, J., Liu, Z., Shao, C., Gong, Y., Hernando, E., Lee, P., et al. (2011) HMGA2 Overexpression-Induced Ovarian Surface Epithelial Transformation Is Mediated through Regulation of EMT Genes. Cancer Research, 71, 349-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, L., Shen, H., Zhu, D., Feng, B., Yu, L., Tian, X., et al. (2018) Increased High Mobility Group a 2 Expression Promotes Transition of Cervical Intraepithelial Neoplasm into Cervical Cancer. Oncotarget, 9, 7891-7901. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Guo, X., Shi, J., Wen, Y., Li, M., Li, Q., Li, X., et al. (2018) Increased High-Mobility Group A2 Correlates with Lymph Node Metastasis and Prognosis of Non-Small Cell Lung Cancer. Cancer Biomarkers, 21, 547-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, W., Li, G., Liu, Z., Chen, Z. and Pu, R. (2021) LncRNA LINC00355 Promotes EMT and Metastasis of Bladder Cancer Cells through the miR-424-5p/HMGA2 Axis. Neoplasma, 68, 1225-1235. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Marquis, M., Beaubois, C., Lavallée, V., Abrahamowicz, M., Danieli, C., Lemieux, S., et al. (2018) High Expression of HMGA2 Independently Predicts Poor Clinical Outcomes in Acute Myeloid Leukemia. Blood Cancer Journal, 8, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, S., Zhang, H. and Yu, L. (2018) HMGA2 Promotes Glioma Invasion and Poor Prognosis via a Long-Range Chromatin Interaction. Cancer Medicine, 7, 3226-3239. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Nishikura, K. (2015) A-to-I Editing of Coding and Non-Coding RNAs by ADARs. Nature Reviews Molecular Cell Biology, 17, 83-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hashemi, M., Rashidi, M., Hushmandi, K., ten Hagen, T.L.M., Salimimoghadam, S., Taheriazam, A., et al. (2023) HMGA2 Regulation by miRNAs in Cancer: Affecting Cancer Hallmarks and Therapy Response. Pharmacological Research, 190, Article 106732. [Google Scholar] [CrossRef] [PubMed]
|