ADAR1和HMGA2在甲状腺乳头状癌中的表达及临床意义分析
Expression and Clinical Significance of ADAR1 and HMGA2 in Papillary Thyroid Carcinoma
DOI: 10.12677/acm.2024.1461797, PDF, HTML, XML,   
作者: 戚庆鑫, 张文伟, 秦作荣, 王效军, 邱 杰*:青岛大学附属医院,耳鼻咽喉头颈外科,山东 青岛;周智超:国药北方医院,耳鼻咽喉科,内蒙古 包头
关键词: ADAR1HMGA2甲状腺乳头状癌免疫组化临床特征ADAR1 HMGA2 Papillary Thyroid Carcinoma Immunohistochemical Clinical Characters
摘要: 目的:研究ADAR1和HMGA2在甲状腺乳头状癌(papillary thyroid carcinoma, PTC)中的表达变化情况,并探究与临床特征的关联。方法:收集2022年6月~2023年3月就诊于青岛大学附属医院行手术切除,经病理确诊为甲状腺乳头状癌患者的癌组织和癌旁组织并收集相关临床资料。应用免疫组化等分子方法检测60对PTC癌组织及癌旁组织中ADAR1和HMGA2的表达情况,并分析探讨二者与临床特征的关联。结果:1) RT-qPCR、Western-blot及免疫组化实验结果均表明在甲状腺乳头状癌组织中ADAR1和HMGA2的表达量明显高于癌旁组织,组间差异具有统计学意义(P < 0.05)。2) PTC中ADAR1和HMGA2的表达增高与有淋巴结转移、较晚期肿瘤分期、肿瘤直径大于1 cm及多病灶多中心有关,与患者年龄、性别无明显关联。3) Spearman相关分析示ADAR1和HMGA2在PTC中的表达呈一定正相关关系(r = 0.437, P = 0.015)。结论:1) ADAR1和HMGA2在PTC组织中的表达上调,表明二者可能为PTC发生发展的促癌因素,表达的上调预示着更高的恶性程度及较差预后。2) ADAR1和HMGA2在PTC发生发展中可能存在协同作用的关系,具体作用机制有待进一步研究。
Abstract: Objective: To investigate the expression changes of ADAR1 and HMGA2 in Papillary thyroid carcinoma, and explore their relationship with clinical features. Methods: Collected cancerous and para-cancerous tissues of patients diagnosed with papillary thyroid carcinoma after surgical resection in Affiliated Hospital of Qingdao University from June 2022 to March 2023 and related clinical data were collected. Immunohistochemical methods were used to detect the expression of ADAR1 and HMGA2 in 60 pairs of PTC cancer tissues and adjacent tissues, and to analyze the relationship between them and clinical features. Results: 1) The results of RT-qPCR, Western-blot and immunohistochemistry showed that the expression levels of ADAR1 and HMGA2 in papillary thyroid carcinoma tissues were significantly higher than those in adjacent tissues, and the differences between groups were statistically significant (P < 0.05). 2) The increased expression of ADAR1 and HMGA2 in PTC is associated with lymph node metastasis, advanced tumor stage, tumor diameter larger than 1cm, and multiple lesions or multicentricity. There is no significant association with patient age or gender. 3) Spearman correlation analysis showed a positive correlation between ADAR1 and HMGA2 expression in PTC (r = 0.437, P = 0.015). Conclusion: 1) The up-regulated expression of ADAR1 and HMGA2 in PTC tissues indicates that they may be cancer-promoting factors in the occurrence and development of PTC, and the up-regulated expression predicts higher malignant degree and poor prognosis. 2) ADAR1 and HMGA2 may have a synergistic relationship in the occurrence and development of PTC, and the specific mechanism of action needs to be further studied.
文章引用:戚庆鑫, 张文伟, 秦作荣, 周智超, 王效军, 邱杰. ADAR1和HMGA2在甲状腺乳头状癌中的表达及临床意义分析[J]. 临床医学进展, 2024, 14(6): 467-478. https://doi.org/10.12677/acm.2024.1461797

1. 引言

甲状腺癌(thyroid carcinoma, TC)为头颈部发病率最高的恶性肿瘤之一,约占全身恶性肿瘤的1.5% [1],近年发病率呈明显上升,尤其是在年轻女性中,有研究表明女性患TC的风险约为男性的3倍[2]。TC最常见发病年龄分布在30~50岁之间,尽管它可以影响各个年龄段人群[3]。甲状腺乳头状癌(papillary thyroid carcinoma, PTC)是最常见类型,约占80%以上[4],其恶性程度较低,病程发展缓慢,预后良好,5年生存率可达96%以上[5],少部分患者具有较强的浸润性,易早期出现局部和远处转移,一旦发生转移,5年存活率可降为54% [6]。PTC的发生和进展与基因突变、基因表达调控因子等遗传因素密切相关[7],因此识别新易感基因并进行关键位点的分子检测有助于早期识别和筛查高危人群。因此发现早期特异性诊断标志物有助于实现早期诊断,并提高确诊率,易于改善患者预后,并为一些中晚期特殊患者提供新的诊疗思路。

本研究通过免疫组化等分子检测方法探究PTC患者癌组织及癌旁组织中ADAR1和HMGA2的表达变化情况,并分析与临床特征的关联,拟进一步探索上述标志物在PTC中的作用机制及其在诊断、鉴别诊断及治疗预后中的临床意义。

2. 资料与方法

2.1. 研究对象

收集2022年6月至2023年3月在青岛大学附属医院行甲状腺肿瘤手术切除标本,癌及癌旁组织各60例(癌旁组织:距肿瘤边界 ≥ 0.8 cm,肉眼观察无异常并经病理证实无癌细胞)。纳入标准:① 经病理证实为甲状腺乳头状癌;② 术前未接受放化疗或靶向等形式的抗癌治疗;③ 无内分泌系统及严重心脑血管等相关疾病史;④ 未合并其它部位恶性肿瘤。

同时整理该60例PTC患者相关临床资料:其中男性20例,女性40例;年龄 < 55岁38例,≥55岁22例,平均年龄(46 ± 5.18)岁;肿瘤直径 ≤ 1.0 cm 32例,直径 > 1 cm 28例;发生淋巴结转移者25例,无转移者35例;甲状腺肿瘤分期(AJCC第8版,2017年)进行临床分期:I、II期共42例,III、IV期18例;单个病灶44例,多病灶16例。本研究报审我院医学伦理委员会批准,并征得所有患者知情同意(伦审批件号:QYFY WZLL28540)。

2.2. 实验试剂及来源

RNA提取试剂Trizol购于北京博奥森生物技术有限公司;PCR试剂盒购于广州吉赛生物科技股份有限公司;兔抗人ADAR1及HMGA2多克隆抗体购于Abcam公司;制胶试剂盒、蛋白marker购于上海雅酶生物医药科技有限公司;PVDF膜0.45 um、BCA蛋白浓度试剂盒、M-MLV、逆转录酶购自美国Thermo Fisher公司;免疫组织化学染色试剂盒、RIPA裂解液、10 × TBST、GAPDH内参抗体、兔二抗和DAB显色试剂盒均购于武汉赛维尔生物科技有限公司。

2.3. 实验方法

2.3.1. 采用RT-qPCR检测PTC癌组织及癌旁组织中ADAR1和HMGA2表达

将适量新鲜组织研磨至糜状,Trizol法提取组织RNA,反转录制备合成cDNA;参照试剂盒说明配制20 μL反应体系,PCR反应过程及条件:预变性95℃ 5 min;变性95℃ 20 s,退火50℃ 30 s和延伸70℃ 30 s,经过40个循环扩增,然后获得对应的扩展曲线及CT值,记录数据以便后续进行统计分析。结果采用2ΔΔCT法计算目的基因相对表达量。以GAPDH作为内参,引物序列由中国生物公司合成(见表1)。

Table 1. Gene and corresponding primer sequence

1. 目的基因及引物序列

Gene

Forward primer sequence

Reverse primer sequence

ADAR1

TGTCCCGAGGAAGTGCAAGA

AGCAGGAAACTACTGGGGGA

HMGA2

CACTGGAGAAAAACGGCCAA

TAAGATTGCCCGGGTGGTCC

GAPDH

GGAGCGAGATCCCTCCAAAAT

GGCTGTTGTCATACTCTCATG

2.3.2. 采用Western Blot检测PTC癌组织及癌旁组织中ADAR1、HMGA2蛋白表达

将新鲜冰冻甲状腺癌组织与癌旁组织充分磨碎,加入蛋白裂解液进行全面裂解;用BCA法测定总蛋白浓度并确定每对蛋白样本等量上样;蛋白通过10%凝胶电泳分离后转至PVDF膜上;室温下脱脂奶粉封闭1 h,继而依照目标蛋白分子量进行裁膜;再分别加入对应一抗,4℃孵育过夜;过夜后TBST洗膜3次,洗涤后加入二抗,室温下摇床孵育2 h,TBST洗涤后予以显色、定影。

2.3.3. 对PTC癌组织及癌旁组织进行免疫组织化学染色

采用SP法:10%中性福尔马林液固定标本,石蜡包埋固定组织;以4 μm厚度连续切片,烤片机设置68℃烤片20 min;二甲苯脱蜡然后梯度酒精脱水及阻断灭活内源性过氧化物酶;继而进行抗原修复(标本置于pH 6.0柠檬酸缓冲液中);切片干燥后予羊血清工作液封闭30 min;滴加稀释后适量抗体工作液(1:400稀释),与目标抗原充分结合,4℃孵育过夜,PBS洗三次;滴加二抗,放置37℃恒温箱孵育30 min;继续PBS冲洗;切片干燥后滴加显色液;苏木素再次复染;脱水、干燥、中性树胶封片,最后镜检并采集图像。

ADAR1、HMGA2免疫组化阳性产物主要表达于细胞核。由2名高年资病理科医师予双盲阅片,首先在低倍镜下观察细胞染色情况,选定甲状腺乳头状癌及癌旁细胞区域,然后在高倍镜下随机选取5个视野,结果判读依据IRS评分标准[8]:即染色强度和阳性细胞百分率的乘机。按细胞染色强度记分:基本不染色记0分;淡黄色记1分;深黄色记2分;棕黄色记3分;按阳性细胞百分率计分:<5%记0分;5%~25%记1分;26%~50%记2分;51%~75%记3分;>75%记4分,上述两项的乘积 ≥ 1结果即为阳性。

2.4. 观察指标

1) 记录甲癌组与癌旁组中ADAR1、HMGA2阳性表达情况;2) 记录PTC组患者ADAR1、HMGA2阳性表达结果,并结合患者的性别、年龄、肿瘤大小、临床分期、淋巴结转移情况、病灶数量等临床特征进行分析。

2.5. 统计分析

采用SPSS 26.0统计软件对实验数据进行分析处理,符合正态分布的计量资料以“x ± s”表示,组间比较采用t检验;计数资料比较采用2检验,P < 0.05认为差异具有统计学意义;对ADAR1和HMGA2两变量存在的相关性采用Spearman分析,检验水准α = 0.05。

3. 结果

3.1. RT-qPCR检测ADAR1和HMGA2的结果

60对组织样本的实验中,ADAR1和HMGA2在PTC组织中mRNA表达量显著高于相对应的癌旁组织,差异具有统计学意义(见表2图1)。进一步绘制ROC曲线验证实验结果的准确性,ROC曲线示:ADAR1在PTC组织中mRNA表达量AUC = 0.587;HMGA2:AUC = 0.935 (见图2)。ROC曲线(受试者工作特征曲线,receiver operating characteristic curve),ROC曲线下的面积值AUC (area under curve)取值正常在0.5和1之间。在AUC > 0.5的情况下,AUC值越趋近于1,表示该诊断模型效果越好。

3.2. Western Blot检测结果

结果显示(如图3),ADAR1和HMGA2在PTC组织中灰度值高于癌旁组织,表明二者在癌组织中蛋白表达水平明显增高,组间差异具有统计学意义(P < 0.05)。

Table 2. Expression of ADAR1 and HMGA2 in PTC cancer tissue and para-cancer tissue ( x ¯ ±s )

2. ADAR1和HMGA2在PTC癌组织和癌旁正常组织中的表达( x ¯ ±s )

Gene

Cancer tissue

Para-cancer tissue

t

p

ADAR1

2.21 ± 0.38

1.03 ± 0.14

4.299

0.002

HMGA2

3.37 ± 0.41

1.28 ± 0.52

9.050

<0.05

Figure 1. The relative expression of ADAR1 and HMGA2 in PTC cancer tissue and paracancerous tissue

1. PTC癌组织与癌旁组织中ADAR1和HMGA2相对表达量

Figure 2. ROC curve of ADAR1 and HMGA2 expression in PTC

2. ADAR1和HMGA2在PTC中表达情况ROC曲线

Figure 3. The expression difference of ADAR1 and HMGA2 in PTC cancer tissue and paracancerous tissue

3. 甲癌组及癌旁组ADAR1和HMGA2的表达差异

3.3. 免疫组织化学染色结果

3.3.1. ADAR1和HMGA2表达情况

ADAR1阳性表达主要定位于细胞核中,免疫组化结果显示:在不同甲状腺组织中均有表达(见图4:A癌旁组织;B癌组织),阳性表达率:甲癌组为65.0% (39/60),癌旁组为30.0% (18/60),两组间差异有统计学意义(P < 0.05);HMGA2也表达于细胞核中(见图5:A癌旁组织;B癌组织),阳性表达率:甲癌组为66.7% (40/60),癌旁组为40.0% (24/60),两组间统计差异均有统计学意义(P < 0.05),见表3

Figure 4. The expression of ADAR1 in different thyroid tissues (SP × 400)

4. ADAR1在甲癌组与癌旁组中的表达差异(SP × 400)

Figure 5. The expression of HMGA2 in different thyroid tissues (SP × 400)

5. HMGA2在甲癌组与癌旁组中的表达差异(SP × 400)

Table 3. The different expression of ADAR1 and HMGA2 in PTC group and normal group

3. 甲癌组与癌旁组中ADAR1和HMGA2的表达差异

Groups

n

ADAR1

HMGA2

Positive

Negative

Positive

Negative

Papillary thyroid cancer

60

39

21

40

20

Para-carcinoma tissues

60

18

42

24

36

χ2

-

14.737

8.571

P

-

<0.001

0.003

3.3.2. ADAR1、HMGA2的表达与PTC临床病理特征的关系

根据实验结果,甲状腺乳头状癌患者中ADAR1高表达与患者肿瘤大小(P = 0.002)、临床分期(P = 0.011)、有淋巴结转移(P = 0.040)及病灶个数(P = 0.028)存在相关性,与年龄(P = 0.129)、性别(P = 0.251)无关联;HMGA2蛋白的表达增高同样与患者肿瘤大小(P = 0.003)、临床分期(P = 0.003)、有淋巴结转移(P = 0.010)及病灶个数(P = 0.007)有关,与年龄(P = 0.185)、性别(P = 0.846)无明显关系(见表4表5)。

Table 4. Correlation between ADAR1 and clinical features of PTC

4. ADAR1蛋白异常表达与PTC患者临床特征之间关联

Index

n

ADAR1

Positive case

Positive rate (%)

χ2

P

Gender






Male

20

11

55.00

1.319

0.251

Female

40

28

70.00

Age (years)






<55

38

22

57.89

2.300

0.129

≥55

22

17

77.27

Lymphatic metastasis






Yes

25

20

80.00

4.239

0.040

No

35

19

54.29

Clinical stages






I, II

42

23

54.76

6.450

0.011

III, IV

18

16

88.89

Diameter of tumor (cm)






≤1.0

32

15

46.88

9.902

0.002

>1.0

28

24

85.71

Number of lesions






1

44

25

56.82

4.855

0.028

>1

16

14

87.50

Table 5. Correlation between HMGA2 and clinical features of PTC

5. HMGA2蛋白异常表达与PTC患者临床特征之间关联

Index

n

HMGA2

Positive case

Positive rate (%)

χ2

P

Gender






Male

20

13

65.00

0.038

0.846

Female

40

27

67.50

Age (years)






<55

38

23

60.53

1.758

0.185

≥55

22

17

77.27

Lymphatic metastasis






Yes

25

22

88.00

6.652

0.010

No

35

18

51.43

Clinical stages






I, II

42

23

54.76

8.929

0.003

III, IV

18

17

94.44

Diameter of tumor (cm)






≤1.0

32

16

50.00

8.571

0.003

>1.0

28

24

85.71

Number of lesions






1

44

25

56.82

7.202

0.007

>1

16

15

93.75

3.3.3. ADAR1、HMGA2在甲状腺乳头状癌中表达的相关性

在60例甲状腺乳头状癌患者中,采用Spearman法分析ADAR1和HMGA2表达的相关性,显示两者在PTC中的表达呈一定正相关,差异具有明显统计学意义(r = 0.437, P = 0.015) (见表6图6),表明ADAR1和HMGA2可联合作为PTC诊断及预后的分子标志物。

Table 6. The relationship between ADAR1 and HMGA2 expression in PTC

6. PTC中ADAR1和HMGA2表达的相关性

ADAR1

HMGA2

Total

r

P

Negative

Positive

Negative

11

10

21

0.437

0.015

Positive

9

30

39

Total

20

40

60

Figure 6. Correlation analysis showed that ADAR1 and HMGA2 expression were positively correlated

6. 相关性分析示ADAR1和HMGA2表达两者呈一定正相关

4. 讨论

甲状腺乳头状癌的发病率呈逐年增长的趋势,已引起人们的日益关注,虽然大多数进展缓慢,总体预后也较好,但其早期发生的淋巴结转移及甲状腺外侵犯,增加了PTC患者术后复发风险及降低生存率[9]。因此积极探索发现与PTC相关的分子诊断标志物及不同标志物间的相关性仍显得尤为重要,有助于评估PTC进展、转移及复发的风险,有助于早期诊断及治疗,对改善PTC预后至关重要。

RNA特异性腺苷脱氨酶(adenosine deaminases acting on RNA, ADAR)包括ADAR1、ADAR2以及ADAR3三种蛋白,其中以结构高度保守的ADAR1表达最为普遍,其结构包含2~3个氨基端的双链RNA结合域(dsRBD)和1个羧基端的脱氨酶结构域。ADAR1作为一种重要的RNA编辑酶,在组织中广泛表达且具有独特的结构特征,可结合dsRNA并催化其中的腺嘌呤转变为次黄嘌呤(A-to-I RNA编辑) [10]。研究表明ADAR1介导的RNA编辑事件与多种恶性肿瘤的发生发展密切相关,如可发生在AZIN1 (抗酶抑制剂1)的mRNA翻译过程中,导致其第367位残基发生丝氨酸到甘氨酸(S-G)的转换,影响蛋白质的功能,从而导致肝癌、食管癌、结直肠癌的发生,并可增加癌细胞的增殖、侵袭能力[11] [12];Dou等人研究表明ADAR1通过激活mTOR/p70S6K/S6核糖体蛋白信号通路来促进体外细胞增殖和迁移,在胃癌的发生发展中起着关键作用,促进胃癌的进展[13];此外,亦有研究表明ADAR1可加强黏附激酶(focal adhesion kinase, FAK) mRNA的稳定性,进而促进肺腺癌的发生及恶性转移[14]。ADAR1高表达及更高频次的A-to-I编辑现象可受胞体内外不同种类信号的刺激,从而介导多条信号转导途径,参与到细胞增殖、分化、成熟和凋亡等生物过程中,如JAK-STAT信号通路和BCR-ABL1表达刺激的干扰素信号通路[15]。此外,ADAR1也可通过非RNA编辑方式发挥作用,如可通过dsRBDs参与构建蛋白质–蛋白质之间的相互作用,从而直接系统地调节多种免疫反应,起到免疫负调节的作用,有助于肿瘤细胞逃避先天免疫识别,从而降低机体对肿瘤细胞的杀伤力,增强了肿瘤细胞的侵袭、转移能力[16]

高迁移率族蛋白A2 (high mobility group protein A2, HMGA2)是一种非组蛋白结构转录因子,位于人类染色体12q13-15位点,含有AT钩结构,可与DNA上AT序列富集区域相结合,从而改变染色质结构,最终促进或抑制下游靶基因的转录[17]。HMGA2还可通过与其他转录因子或者相关蛋白直接结合发生作用,从而影响诸如细胞周期、DNA损伤修复、上皮–间质转化(EMT)和细胞凋亡等生物学功能,最终导致恶性肿瘤的发生进展[18],研究证实其可作为肿瘤早期诊断治疗、评估预后及评估化疗敏感性的潜在分子标志物和靶点。HMGA2可通过对细胞周期调控及DNA损伤修复机制影响肿瘤细胞快速增殖,此外还可通过抗凋亡作用使肿瘤细胞能够逃避机体的免疫清除,进一步促进肿瘤的发展。HMGA2在多种癌症中表达上调,如肺癌、乳腺癌和卵巢癌等,可作为潜在的肿瘤诊断标志物。通过小干扰RNA (siRNA)或特定抑制剂靶向HMGA2可以抑制肿瘤的发展、转移和耐药性,表明HMGA2是一个潜在的治疗靶点[19],其表达水平与肿瘤的进展风险相关,可用于评估患者的预后情况。

Sun等研究发现HMGA2可通过上调TWIST1促进血管新生和转移,还可通过活化并促进 EMT相关因子Snail和β-catenin的表达,显著增强胃癌细胞的生长增殖和侵袭能力,其高表达水平提示患者预后变差[20]。LI等[21]的研究显示,过高表达的miR-195可靶向下调HMGA2并抑制mTOR/p70s6k信号通路,明显抑制食管磷癌细胞生长并诱导细胞凋亡,且与食管鳞癌的EMT密切相关。Zhao等[22]通过分析373例肝癌病例的RNA-seq数据,发现HMGA2在肝癌中高表达,且与性别、肿瘤大小、临床分期和总生存期显著相关,通过miRNA-26a靶向抑制HMGA2表达可降低肝癌细胞增殖和侵袭能力,明显降低肝癌的恶性行为。Ou等[23]研究表明异丙酚可通过miRNAs靶向下调HMGA2表达,激活Wnt/β-catenin信号通路引起HepG2细胞凋亡,阻止肿瘤细胞的生长和侵袭。HMGA2与消化系统肿瘤的发生发展密切相关,作为转录调控因子,可通过激活MAPK/ERK、TGF-β/Smad、PI3K/AKT/mTOR、miRNAs/HMGA2和Wnt/β-catenin等信号通路,活化参与不同DNA修复机制、干细胞自我更新分化及促进EMT转化,导致肿瘤的恶性生物学行为[24]。此外研究证实HMGA2在乳腺癌[18]、宫颈癌[25]、肺腺癌[26]、膀胱癌[27]及血液系统肿瘤如急性髓性白血病(acute myeloid leukemia, AML) [28]、恶性胶质瘤[29]中均呈现不同程度的高表达,且常常提示预后较差及更易出现化疗抵抗。

以往大量研究结果均证实ADAR1和HMGA2与多种肿瘤的发生、发展密切相关,但二者在甲状腺肿瘤中的研究文献报道较少,具体的功能影响及机制仍不清楚,本文应用免疫组化等分子方法探究二者在PTC组织中的表达情况及相关性。本研究发现在PTC组织中ADAR1和HMGA2的表达均高于癌旁组织且其异常高表达与患者肿瘤大小、TNM临床分期、淋巴结转移及病灶个数存在相关性,与年龄、性别无明显关联,表明上述两基因可能在PTC发生发展中起到了促进因素的作用;在有淋巴结转移、大的肿瘤直径及较晚肿瘤分期中出现高表达表明该基因可能具有增强肿瘤细胞增殖、迁移和侵袭能力,高表达预示着更高的恶性程度及不良预后。本研究结果与以往文献报道的二者促进肿瘤发生发展的结果一致。

ADAR1和HMGA2在肿瘤中高表达都可以靶向或接受miRNAs的调控,从而促进肿瘤的侵袭和转移[30] [31]。该两种基因的交汇点都可上调或下调miRNAs的表达,通过靶向特异性调节相关信号通路发挥作用。还有研究[20]表明其均可以促进肿瘤微血管的生成及转移,但具体协同作用机制尚未详细阐明。本实验通过Spearman相关性分析表明ADAR1和HMGA2在PTC组织中的表达存在一定相关性且呈正相关,预示着两者的联合检测可作为PTC早期诊断、治疗和评估预后的重要指标。

本文献为初步研究,尚有不足之处,比如样本量少、实验产生的误差、回顾性研究存在一定偏倚、临床资料肿瘤分期T3、T4比例较少及缺乏患者预后分析等,还需进一步深入探究及不断完善,以期为PTC的早期诊断及治疗寻找出更多分子靶点。

NOTES

*通讯作者。

参考文献

[1] Higashino, M., Ayani, Y., Terada, T., et al. (2019) Clinical Features of Poorly Differentiated Thyroid Papillary Carcinoma. Auris Nasus Larynx, 46, 437-442.
https://doi.org/10.1016/j.anl.2018.10.001
[2] Londero, S.C., Krogdahl, A., Bastholt, L., et al. (2013) Papillary Thyroid Microcarcinoma in Denmark 1996-2008: A National Study of Epidemiology and Clinical Significance. Thyroid, 23, 1159-1164.
https://doi.org/10.1089/thy.2012.0595
[3] Wang, X., Tan, J., Zheng, W., et al. (2018) A Retrospective Study of the Clinical Features in Papillary Thyroid Microcarcinoma Depending on Age. Nuclear Medicine Communications, 39, 713-719.
https://doi.org/10.1097/MNM.0000000000000859
[4] Haddad, R.I., Nasr, C., Bischoff, L., et al. (2018) NCCN Guidelines Insights: Thyroid Carcinoma, Version 2.2018. Journal of the National Comprehensive Cancer Network, 16, 1429-1440.
https://doi.org/10.6004/jnccn.2018.0089
[5] 王得力, 张文伟, 秦作荣, 等. 接头蛋白Gab1和酪氨酸磷酸酶SHP2在50例甲状腺乳头状癌中的表达及临床意义分析[J]. 肿瘤学杂志, 2022, 28(5): 389-395.
[6] Ze, Y., Zhang, X., Shao, F., Zhu, L., Shen, S., Zhu, D., et al. (2019) Active Surveillance of Low-Risk Papillary Thyroid Carcinoma: A Promising Strategy Requiring Additional Evidence. Journal of Cancer Research and Clinical Oncology, 145, 2751-2759.
https://doi.org/10.1007/s00432-019-03021-y
[7] Wang, J.R., Zafereo, M.E., Wang, W., Joshu, C. and Ray, D. (2023) Association of Polygenic Score with Tumor Molecular Subtypes in Papillary Thyroid Carcinoma. The Journal of Clinical Endocrinology & Metabolism, 109, e306-e313.
https://doi.org/10.1210/clinem/dgad407
[8] Lam, A.K. and Lee, K.T. (2022) Application of Immunohistochemistry in Papillary Thyroid Carcinoma. Methods in Molecular Biology, 2534, 175-195.
[9] Gong, Y., Wu, W., Zou, X., et al. (2018) MiR-26a Inhibits Thyroid Cancer Cell Proliferation by Targeting ARPP19. American Journal of Cancer Research, 8, 1030-1039.
[10] Karki, R., Sundaram, B., Sharma, B.R., Lee, S., Malireddi, R.K.S., Nguyen, L.N., et al. (2021) ADAR1 Restricts ZBP1-Mediated Immune Response and PANoptosis to Promote Tumorigenesis. Cell Reports, 37, Article 109858.
https://doi.org/10.1016/j.celrep.2021.109858
[11] Chen, L., Li, Y., Lin, C.H., Chan, T.H.M., Chow, R.K.K., Song, Y., et al. (2013) Recoding RNA Editing of AZIN1 Predisposes to Hepatocellular Carcinoma. Nature Medicine, 19, 209-216.
https://doi.org/10.1038/nm.3043
[12] Qin, Y., Qiao, J., Chan, T.H.M., Zhu, Y., Li, F., Liu, H., et al. (2014) Adenosine-to-Inosine RNA Editing Mediated by ADARs in Esophageal Squamous Cell Carcinoma. Cancer Research, 74, 840-851.
https://doi.org/10.1158/0008-5472.can-13-2545
[13] Dou, N., Yu, S., Ye, X., Yang, D., Li, Y. and Gao, Y. (2016) Aberrant Overexpression of ADAR1 Promotes Gastric Cancer Progression by Activating mTOR/p70S6K Signaling. Oncotarget, 7, 86161-86173.
https://doi.org/10.18632/oncotarget.13354
[14] Amin, E.M., Liu, Y., Deng, S., Tan, K.S., Chudgar, N., Mayo, M.W., et al. (2017) The RNA-Editing Enzyme ADAR Promotes Lung Adenocarcinoma Migration and Invasion by Stabilizing FAK. Science Signaling, 10, eaah3941.
https://doi.org/10.1126/scisignal.aah3941
[15] Zipeto, M.A., Court, A.C., Sadarangani, A., Delos Santos, N.P., Balaian, L., Chun, H., et al. (2016) ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis. Cell Stem Cell, 19, 177-191.
https://doi.org/10.1016/j.stem.2016.05.004
[16] Fritzell, K., Xu, L., Lagergren, J. and Öhman, M. (2018) ADARs and Editing: the Role of A-to-I RNA Modification in Cancer Progression. Seminars in Cell & Developmental Biology, 79, 123-130.
https://doi.org/10.1016/j.semcdb.2017.11.018
[17] Colombo, D.F., Burger, L., Baubec, T. and Schübeler, D. (2017) Binding of High Mobility Group a Proteins to the Mammalian Genome Occurs as a Function of AT-Content. PLOS Genetics, 13, e1007102.
https://doi.org/10.1371/journal.pgen.1007102
[18] Wu, J., Zhang, S., Shan, J., Hu, Z., Liu, X., Chen, L., et al. (2016) Elevated HMGA2 Expression Is Associated with Cancer Aggressiveness and Predicts Poor Outcome in Breast Cancer. Cancer Letters, 376, 284-292.
https://doi.org/10.1016/j.canlet.2016.04.005
[19] Mansoori, B., Mohammadi, A., Ditzel, H.J., Duijf, P.H.G., Khaze, V., Gjerstorff, M.F., et al. (2021) HMGA2 as a Critical Regulator in Cancer Development. Genes, 12, Article 269.
https://doi.org/10.3390/genes12020269
[20] Sun, J., Sun, B., Zhu, D., et al. (2017) HMGA2 Regulates CD44 Expression to Promote Gastric Cancer Cell Motility and Sphere Formation. American Journal of Cancer Research, 7, 260-274.
[21] Li, Y., Wu, D., Wang, P., Li, X. and Shi, G. (2017) miR-195 Regulates Proliferation and Apoptosis through Inhibiting the mTOR/p70S6K Signaling Pathway by Targeting HMGA2 in Esophageal Carcinoma Cells. Disease Markers, 2017, Article 8317913.
https://doi.org/10.1155/2017/8317913
[22] Zhao, Y., Jiao, Y., Li, Y., Fu, Z., Yang, Z. and He, M. (2019) Elevated High Mobility Group A2 Expression in Liver Cancer Predicts Poor Patient Survival. Revista Española de Enfermedades Digestivas, 112, 27-33.
https://doi.org/10.17235/reed.2019.6365/2019
[23] Ou, W., Lv, J., Zou, X., Yao, Y., Wu, J., Yang, J., et al. (2017) Propofol Inhibits Hepatocellular Carcinoma Growth and Invasion through the HMGA2-Mediated Wnt/β-Catenin Pathway. Experimental and Therapeutic Medicine, 13, 2501-2506.
https://doi.org/10.3892/etm.2017.4253
[24] Wu, J., Liu, Z., Shao, C., Gong, Y., Hernando, E., Lee, P., et al. (2011) HMGA2 Overexpression-Induced Ovarian Surface Epithelial Transformation Is Mediated through Regulation of EMT Genes. Cancer Research, 71, 349-359.
https://doi.org/10.1158/0008-5472.can-10-2550
[25] Wang, L., Shen, H., Zhu, D., Feng, B., Yu, L., Tian, X., et al. (2018) Increased High Mobility Group a 2 Expression Promotes Transition of Cervical Intraepithelial Neoplasm into Cervical Cancer. Oncotarget, 9, 7891-7901.
https://doi.org/10.18632/oncotarget.24080
[26] Guo, X., Shi, J., Wen, Y., Li, M., Li, Q., Li, X., et al. (2018) Increased High-Mobility Group A2 Correlates with Lymph Node Metastasis and Prognosis of Non-Small Cell Lung Cancer. Cancer Biomarkers, 21, 547-555.
https://doi.org/10.3233/cbm-170401
[27] Li, W., Li, G., Liu, Z., Chen, Z. and Pu, R. (2021) LncRNA LINC00355 Promotes EMT and Metastasis of Bladder Cancer Cells through the miR-424-5p/HMGA2 Axis. Neoplasma, 68, 1225-1235.
https://doi.org/10.4149/neo_2021_210427n574
[28] Marquis, M., Beaubois, C., Lavallée, V., Abrahamowicz, M., Danieli, C., Lemieux, S., et al. (2018) High Expression of HMGA2 Independently Predicts Poor Clinical Outcomes in Acute Myeloid Leukemia. Blood Cancer Journal, 8, Article No. 68.
https://doi.org/10.1038/s41408-018-0103-6
[29] Zhang, S., Zhang, H. and Yu, L. (2018) HMGA2 Promotes Glioma Invasion and Poor Prognosis via a Long-Range Chromatin Interaction. Cancer Medicine, 7, 3226-3239.
https://doi.org/10.1002/cam4.1534
[30] Nishikura, K. (2015) A-to-I Editing of Coding and Non-Coding RNAs by ADARs. Nature Reviews Molecular Cell Biology, 17, 83-96.
https://doi.org/10.1038/nrm.2015.4
[31] Hashemi, M., Rashidi, M., Hushmandi, K., ten Hagen, T.L.M., Salimimoghadam, S., Taheriazam, A., et al. (2023) HMGA2 Regulation by miRNAs in Cancer: Affecting Cancer Hallmarks and Therapy Response. Pharmacological Research, 190, Article 106732.
https://doi.org/10.1016/j.phrs.2023.106732