|
[1]
|
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020) The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-nCoV and Naming It SARS-CoV-2. Nature Microbiology, 5, 536-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chen, Y., Guo, Y., Pan, Y. and Zhao, Z.J. (2020) Structure Analysis of the Receptor Binding of 2019-nCoV. Biochemical and Biophysical Research Communications, 525, 135-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., et al. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cui, S., Chen, S., Li, X., Liu, S. and Wang, F. (2020) Prevalence of Venous Thromboembolism in Patients with Severe Novel Coronavirus Pneumonia. Journal of Thrombosis and Haemostasis, 18, 1421-1424. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Klok, F.A., Kruip, M.J.H.A., Van der Meer, N.J.M., Arbous, M.S., Gommers, D.A.M.P.J., et al. (2020) Incidence of Thrombotic Complications in Critically Ill ICU Patients with COVID-19. Thrombosis Research, 191, 145-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Helms, J., Tacquard, C., Severac, F., Leonard-Lorant, I., Ohana, M., et al. (2020) High Risk of Thrombosis in Patients with Severe SARS-CoV-2 Infection: A Multicenter Prospective Cohort Study. Intensive Care Medicine, 46, 1089-1098. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Poissy, J., Goutay, J., Caplan, M., Parmentier, E. and Duburcq, T. (2020) Lille ICU Haemostasis COVID-19 Group. Pulmonary Embolism in Patients with COVID-19: Awareness of an Increased Prevalence. Circulation, 142, 184-186.
|
|
[8]
|
Tian, S., Hu, W., Niu, L., Liu, H., Xu, H. and Xiao, S.-Y. (2020) Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients with Lung Cancer. Journal of Thoracic Oncology, 15, 700-704. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y.-Q., et al. (2020) Lymphopenia Predicts Disease Severity of COVID-19: A Descriptive and Predictive Study. Signal Transduction and Targeted Therapy, 5, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Favresse, J., Lippi, G., Roy, P.-M., Chatelain, B., Jacqmin, H., et al. (2018) D-Dimer: Preanalytical, Analytical, Postanalytical Variables, and Clinical Applications. Critical Reviews in Clinical Laboratory Sciences, 55, 548-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Petrilli, C.M., Jones, S.A., Yang, J., Rajagopalan, H., O’Donnell, L., et al. (2020) Factors Associated with Hospital Admission and Critical Illness among 5279 People with Coronavirus Disease 2019 in New York City: Prospective Cohort Study. The BMJ, 369, m1966. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., et al. (2020) Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. The Lancet, 395, 507-513. [Google Scholar] [CrossRef]
|
|
[13]
|
Yu, M., Nardella, A. and Pechet, L. (2000) Screening Tests of Disseminated Intravascular Coagulation: Guidelines for Rapid and Specific Laboratory Diagnosis. Critical Care Medicine, 28, 1777-1780. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Guan, W.-J., Ni, Z.-Y., Hu, Y., Liang, W.-H., Ou, C.-Q., He, J.-X., et al. (2020) Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine, 382, 1708-1720. [Google Scholar] [CrossRef]
|
|
[15]
|
Tang, N., Li, D., Wang, X. and Sun, Z. (2020) Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. Journal of Thrombosis and Haemostasis, 18, 844-847. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wan, Y., Shang, J., Graham, R., Baric, R.S. and Li, F. (2020) Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology, 94, e00127-20. [Google Scholar] [CrossRef]
|
|
[17]
|
Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y. and Zhou, Q. (2020) Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2. Science, 367, 1444-1448. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, J., Chen, S. and Bihl, J. (2020) Exosome-Mediated Transfer of ACE2 (Angiotensin-Converting Enzyme 2) from Endothelial Progenitor Cells Promotes Survival and Function of Endothelial Cell. Oxidative Medicine and Cellular Longevity, 2020, Article 4213541. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jose, R.J. and Manuel, A. (2020) COVID-19 Cytokine Storm: The Interplay between Inflammation and Coagulation. The Lancet Respiratory Medicine, 8, E46-E47. [Google Scholar] [CrossRef]
|
|
[20]
|
Wichmann, D., Sperhake, J.-P., Lütgehetmann, M., Addo, M.M., Aepfelbacher, M., Püschel, K., Kluge, S., et al. (2020) Autopsy Findings and Venous Thromboembolism in Patients with COVID-19: A Prospective Cohort Study. Annals of Internal Medicine, 173, 268-277. [Google Scholar] [CrossRef]
|
|
[21]
|
Fox, S.E., Akmatbekov, A., Harbert, J.L., Li, G., Quincy Brown, J. and Vander Heide, R.S. (2020) Pulmonary and Cardiac Pathology in African American Patients with COVID-19: An Autopsy Series from New Orleans. The Lancet Respiratory Medicine, 8, 681-686. [Google Scholar] [CrossRef]
|
|
[22]
|
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., et al. (2020) Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 323, 1061-1069. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Barth, R.F., Buja, L.M. and Parwani, A.V. (2020) The Spectrum of Pathological Findings in Coronavirus Disease (COVID-19) and the Pathogenesis of SARS-CoV-2. Diagnostic Pathology, 15, Article No. 85. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Levi, M. and Van der Poll, T. (2017) Coagulation and Sepsis. Thrombosis Research, 149, 38-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hottz, E.D., Azevedo-Quintanilha, I.G., Palhinha, L., Teixeira, L., Barreto, E.A., et al. (2020) Platelet Activation and Platelet-Monocyte Aggregate Formation Trigger Tissue Factor Expression in Patients with Severe COVID-19. Blood, 136, 1330-1341. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Levi, M. (2016) Platelets in Critical Illness. Seminars in Thrombosis and Hemostasis, 42, 252-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chrysanthopoulou, A., Kambas, K., Stakos, D., Mitroulis, I., Mitsios, A., et al. (2017) Interferon Lambda1/IL-29 and Inorganic Polyphosphate Are Novel Regulators of Neutrophil-Driven Thromboinflammation. The Journal of Pathology, 243, 111-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Targosz-Korecka, M., Kubisiak, A., Kloska, D., Kopacz, A., Grochot-Przeczek, A. and Szymonski, M. (2021) Endothelial Glycocalyx Shields the Interaction of SARS-CoV-2spike Protein with ACE2 Receptors. Scientific Reports, 11, Article No. 12157. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Prasad, M., Leon, M., Lerman, L.O. and Lerman, A. (2021) Viral Endothelial Dysfunction: A Unifying Mechanism for COVID-19. Mayo Clinic Proceedings, 96, 3099-3108. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Armstrong, S.M., Darwish, I. and Lee, W.L. (2013) Endothelial Activation and Dysfunction in the Pathogenesis of Influenza A Virus Infection. Virulence, 4, 537-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Gyöngyösi, M., Alcaide, P., Asselbergs, F.W., Brundel, B.J.J.M., Camici, G.G., et al. (2023) Long COVID and the Cardiovascular System-Elucidating Causes and Cellular Mechanisms in Order to Develop Targeted Diagnostic and Therapeutic Strategies: A Joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovascular Research, 119, 336-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lippi, G., Plebani, M. and Henry, B.M. (2020) Thrombocytopenia Is Associated with Severe Coronavirus Disease 2019 (COVID-19) Infections: A Meta-Analysis. Clinica Chimica Acta, 506, 145-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, Y., et al. (2020) Mechanisms Involved in the Development of Thrombocytopenia in Patients with COVID-19. Thrombosis Research, 193, 110-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Seyoum, M., Enawgaw, B. and Melku, M. (2018) Human Blood Platelets and Viruses: Defense Mechanism and Role in the Removal of Viral Pathogens. Thrombosis Journal, 16, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ropa, J., Cooper, S., Capitano, M.L., Van’T Hof, W. and Broxmeyer, H.E. (2021) Human Hematopoietic Stem, Progenitor, and Immune Cells Respond ex vivo to SARS-CoV-2 Spike Protein. Stem Cell Reviews and Reports, 17, 253-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Assinger, A. (2014) Platelets and Infection—An Emerging Role of Platelets in Viral Infection. Frontiers in Immunology, 5, Article 649. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wool, G.D. and Miller, J.L. (2021) The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology, 88, 15-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Morrell, C.N., Aggrey, A.A., Chapman, L.M. and Modjeski, K.L. (2014) Emerging Roles for Platelets as Immune and Inflammatory Cells. Blood, 123, 2759-2767. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Thachil, J. (2020) What Does Monitoring Platelet Counts in COVID-19 Teach Us? Journal of Thrombosis and Haemostasis, 18, 2071-2072. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Duca, S.-T., Costache, A.-D., Miftode, R.-Ş., Mitu, O., Petriş, A.-O. and Costache, I.-I. (2022) Hypercoagulability in COVID-19: From an Unknown Beginning to Future Therapies. Medicine and Pharmacy Reports, 95, 236-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Loo, J., Spittle, D.A. and Newnham, M. (2021) COVID-19, Immunothrombosis and Venous Thromboembolism: Biological Mechanisms. Thorax, 76, 412-420. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
McDonald, B., Davis, R.P., Kim, S.-J., Tse, M., Esmon, C.T., Kolaczkowska, E., et al. (2017) Platelets and Neutrophil Extracellular Traps Collaborate to Promote Intravascular Coagulation during Sepsis in Mice. Blood, 129, 1357-1367. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Santiesteban-Lores, L.E., Amamura, T.A., da Silva, T.F., Midon, L.M., Carneiro, M.C., Isaac, L., et al. (2021) A Double Edged-Sword—The Complement System during SARS-CoV-2 Infection. Life Sciences, 272, Article 119245. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Welsh, J.D., Hoofnagle, M.H., Bamezai, S., Oxendine, M., Lim, L., Hall, J.D., et al. (2019) Hemodynamic Regulation of Perivalvular Endothelial Gene Expression Prevents Deep Venous Thrombosis. Journal of Clinical Investigation, 129, 5489-5500. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Colling, M.E., Tourdot, B.E. and Kanthi, Y. (2021) Inflammation, Infection and Venous Thromboembolism. Circulation Research, 128, 2017-2036. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Engelmann, B. and Massberg, S. (2012) Thrombosis as an Intravascular Effector of Innate Immunity. Nature Reviews Immunology, 13, 34-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Jian, D., Wang, Y., Jian, L., Tang, H., Rao, L., Chen, K., et al. (2020) METTL14 Aggravates Endothelial Inflammation and Atherosclerosis by Increasing FOXO1 N6-Methyladeosine Modifications. Theranostics, 10, 8939-8956. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zwaal, R.F.A. and Schroit, A.J. (1997) Pathophysiologic Implications of Membrane Phospholipid Asymmetry in Blood Cells. Blood, 89, 1121-1132. [Google Scholar] [CrossRef]
|
|
[49]
|
Dolhnikoff, M., Duarte-Neto, A.N., de Almeida Monteiro, R.A., da Silva, L.F.F., de Oliveira, E.P., Saldiva, P.H.N., et al. (2020) Pathological Evidence of Pulmonary Thrombotic Phenomena in Severe COVID-19. Journal of Thrombosis and Haemostasis, 18, 1517-1519. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Pellegrini, D., Kawakami, R., Guagliumi, G., Sakamoto, A., Kawai, K., Gianatti, A., et al. (2021) Microthrombi as a Major Cause of Cardiac Injury in COVID-19. Circulation, 143, 1031-1042. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lim, E.H.T., van Amstel, R.B.E., de Boer, V.V., van Vught, L.A., de Bruin, S., Brouwer, M.C., et al. (2023) Complement Activation in COVID-19 and Targeted Therapeutic Options: A Scoping Review. Blood Reviews, 57, Article 100995. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Lim, M.S. and Mcrae, S. (2021) COVID-19 and Immunothrombosis: Pathophysiology and Therapeutic Implications. Critical Reviews in Oncology/Hematology, 168, Article 103529. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Esmon, C. (2006) Inflammation and the Activated Protein C Anticoagulant Pathway. Seminars in Thrombosis and Hemostasis, 32, 49-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Stoermer, K.A. and Morrison, T.E. (2011) Complement and Viral Pathogenesis. Virology, 411, 362-373. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., et al. (2020) Cell Entry Mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences, 117, 11727-11734. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Tang, N., Bai, H., Chen, X., Gong, J., Li, D. and Sun, Z. (2020) Anticoagulant Treatment Is Associated with Decreased Mortality in Severe Coronavirus Disease 2019 Patients with Coagulopathy. Journal of Thrombosis and Haemostasis, 18, 1094-1099. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Weeks, L.D., Sylvester, K.W., Connors, J.M. and Connell, N.T. (2021) Management of Therapeutic Unfractionated Heparin in COVID-19 Patients: A Retrospective Cohort Study. Research and Practice in Thrombosis and Haemostasis, 5, e12521. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Thachil, J., Wada, H. and Gando, S. (2020) ISTH Interim Guidance on Recognition and Management of Coagulopathy in COVID-19. Journal of Thrombosis and Haemostasis, 18, 1023-1026. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Vaughn, V.M., Yost, M., Abshire, C., Flanders, S.A., Paje, D., Grant, P., et al. (2021) Trends in Venous Thromboembolism Anticoagulation in Patients Hospitalized with COVID-19. JAMA Network Open, 4, e2111788. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Gozzo, L., Viale, P., Longo, L., Vitale, D.C. and Drago, F. (2020) The Potential Role of Heparin in Patients with COVID-19: Beyond the Anticoagulant Effect. A Review. Frontiers in Pharmacology, 11, Article 1307. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Gillot, C., Favresse, J., Mullier, F., Lecompte, T., Dogné, J.-M. and Douxfils, J. (2021) Netosis and the Immune System in COVID-19: Mechanisms and Potential Treatments. Frontiers in Pharmacology, 12, Article 708302. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Hou, Y.J., Okuda, K., Edwards, C.E., Martinez, D.R., Asakura, T., Dinnon, K.H., et al. (2020) SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 182, 429-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Song, J., Wang, G., Zhang, W., Zhang, Y., Li, W.-Q., Zhou, Z., et al. (2020) Chinese Expert Consensus on Diagnosis and Treatment of Coagulation Dysfunction in COVID-19. Military Medical Research, 7, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Piazza, G. and Morrow, D.A. (2020) Diagnosis, Management, and Pathophysiology of Arterial and Venous Thrombosis in COVID-19. JAMA, 324, 2548-2549. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
The REMAP-CAP, ACTIV-4a, and ATTACC Investigators (2021) Therapeutic Anticoagulation with Heparin in Critically Ill Patients with COVID-19. New England Journal of Medicine, 385, 777-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Warner, T.D., Nylander, S. and Whatling, C. (2011) Anti-Platelet Therapy: Cyclo-Oxygenase Inhibition and the Use of Aspirin with Particular Regard to Dual Anti-Platelet Therapy. British Journal of Clinical Pharmacology, 72, 619-633. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Damman, P., Woudstra, P., Kuijt, W.J., de Winter, R.J. and James, S.K. (2011) P2Y12 Platelet Inhibition in Clinical Practice. Journal of Thrombosis and Thrombolysis, 33, 143-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Huang, B., Chen, Z., Geng, L., Wang, J., Liang, H., Cao, Y., et al. (2019) Mucosal Profiling of Pediatric-Onset Colitis and IBD Reveals Common Pathogenics and Therapeutic Pathways. Cell, 179, 1160-1176. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Liu, X., Li, Z., Liu, S., Sun, J., Chen, Z., Jiang, M., et al. (2020) Potential Therapeutic Effects of Dipyridamole in the Severely Ill Patients with COVID-19. Acta Pharmaceutica Sinica B, 10, 1205-1215. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Iwata, K., Doi, A., Ohji, G., Oka, H., Oba, Y., Takimoto, K., et al. (2010) Effect of Neutrophil Elastase Inhibitor (Sivelestat Sodium) in the Treatment of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS): A Systematic Review and Meta-Analysis. Internal Medicine, 49, 2423-2432. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Sakashita, A., Nishimura, Y., Nishiuma, T., Takenaka, K., Kobayashi, K., Kotani, Y., et al. (2007) Neutrophil Elastase Inhibitor (Sivelestat) Attenuates Subsequent Ventilator-Induced Lung Injury in Mice. European Journal of Pharmacology, 571, 62-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Miyoshi, S., Ito, R., Katayama, H., Dote, K., Aibiki, M., Hamada, H., et al. (2014) Combination Therapy with Sivelestat and Recombinant Human Soluble Thrombomodulin for ARDS and DIC Patients. Drug Design, Development and Therapy, 8, 1211-1219. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Sahebnasagh, A., Saghafi, F., Safdari, M., Khataminia, M., Sadremomtaz, A., Ghaleno, H.R., Bagheri, M., Bagheri, M.S., Habtemariam, S. and Avan, R. (2020) Neutrophil Elastase Inhibitor (Sivelestat), May Be a Promising Therapeutic Option for Management of Acute Lung Injury/Acute Respiratory Distress Syndrome or Disseminated Intravascular Coagulation in COVID-19. Journal of Clinical Pharmacy and Therapeutics, 45, 1515-1519. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Zizzo, G., Tamburello, A., Castelnovo, L., Laria, A., Mumoli, N., Faggioli, P.M., et al. (2022) Immunotherapy of COVID-19: Inside and beyond IL-6 Signalling. Frontiers in Immunology, 13, Article 795315. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Matthay, M.A. and Luetkemeyer, A.F. (2021) IL-6 Receptor Antagonist Therapy for Patients Hospitalized for COVID-19: Who, When, and How? JAMA, 326, 483-485. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Diurno, F., Numis, F.G., Porta, G., Cirillo, F. and Maddaluno, S. (2020) Eculizumab Treatment in Patients with COVID-19: Preliminary Results from Real Life ASL Napoli 2 Nord Experience. European Review for Medical and Pharmacological Sciences, 24, 4040-4047.
|
|
[77]
|
Annane, D., Heming, N., Grimaldi-Bensouda, L., Frémeaux-Bacchi, V., Vigan, M., Roux, A., et al. (2020) Eculizumab as an Emergency Treatment for Adult Patients with Severe COVID-19 in the Intensive Care Unit: A Proof-of-Concept Study. eClinicalMedicine, 28, Article 100590. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Mastellos, D.C., Pires da Silva, B.G.P., Fonseca, B.A.L., Fonseca, N.P., Auxiliadora-Martins, M., Mastaglio, S., et al. (2020) Complement C3 vs C5 Inhibition in Severe COVID-19: Early Clinical Findings Reveal Differential Biological Efficacy. Clinical Immunology, 220, Article 108598. [Google Scholar] [CrossRef] [PubMed]
|