慢性阻塞性肺疾病合并肺动脉高压的研究进展
Progress in Chronic Obstructive Pulmonary Disease Combined with Pulmonary Hypertension
DOI: 10.12677/jcpm.2024.32072, PDF, HTML, XML,   
作者: 张龙胜:青海大学研究生院,青海 西宁;左小芹*:青海大学附属医院老年医学科,青海 西宁
关键词: 慢性阻塞性肺病肺动脉高压危险因素治疗Chronic Obstructive Pulmonary Disease Pulmonary Hypertension Risk Factors Treatment
摘要: 慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)简称慢阻肺,是一种常见的、可以预防和治疗的疾病。而肺动脉高压是COPD严重的并发症之一。目前COPD并发肺动脉高压人数日益增加,本文就COPD与肺动脉高压的关系、COPD合并肺动脉高压的危险因素及对COPD合并肺动脉高压患者的相关治疗进行综述。
Abstract: Chronic obstructive pulmonary disease (COPD) is a common, preventable and treatable disease. And pulmonary hypertension is one of the serious complications of COPD. At present, the number of COPD with pulmonary hypertension is increasing, this paper reviews the relationship between COPD and pulmonary hypertension, the risk factors of COPD with pulmonary hypertension, and the related treatment of COPD patients with pulmonary hypertension.
文章引用:张龙胜, 左小芹. 慢性阻塞性肺疾病合并肺动脉高压的研究进展[J]. 临床个性化医学, 2024, 3(2): 490-498. https://doi.org/10.12677/jcpm.2024.32072

1. 引言

慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)是一种气道反复持续的不可逆气流阻塞所导致的异质性的肺部疾病,其特征表现为支气管炎、毛细支气管炎以及伴或不伴有肺泡肺气肿,主要的临床症状包括呼吸困难、咳嗽、咳痰[1]。临床工作中常以肺功能检查提示使用支气管扩张剂后用力呼吸第一秒呼气容积(FEV1)/用力肺活量(FVC) < 0.7来确诊COPD。除此之外,FEV1还被用于确定气流阻塞的严重程度(GOLD 1、2、3和4级,或轻度、中度、重度和极重度)。基于可能导致COPD的不同病因,GOLD2023提出了一种新的COPD分类[1],包括以下六类:1) 基因决定的COPD;2) 肺发育异常所致COPD);3) 环境COPD;4) 感染所致COPD;5) COPD和哮喘;6) 原因不明的COPD。慢性阻塞性肺病(COPD)在全球范围内有约4亿患者,患者数量呈逐年增加趋势,预估到2025年全球COPD患病率将接近6亿例[2],在中国,2018中国肺健康研究发现,20岁以上成年人的慢性阻塞性肺病患病率为8.6% [3],占近1亿人,已成为全球第三大死因[4],每年造成600多万人死亡,严重威胁着人类健康并给患者及家庭造成沉重的经济负担。

肺动脉高压(PH)是一种进行性致命性疾病,其特征是血管重塑异常和肺动脉压持续升高,最终导致右心衰竭甚至死亡[5]。最新的定义为仰卧位静息时平均肺动脉压(PAP) ≥ 20 mmHg [6]。依据第六届世界肺动脉高压研讨会(WSPH) 2022 ESC/ERS肺动脉高压诊断和治疗指南最新PH的分类,包括五组,其中第三组为与肺部疾病和/或缺氧相关的肺动脉高压。右心导管插入术作为一种侵入性操作是PH诊断及分类的金指标,临床上PH的诊断主要依赖于多普勒超声心动图,其为最重要的非侵入性诊断措施,基于三尖瓣处的最大反流率(“峰值三尖瓣反流速度”[“峰值TRV”];限值 > 2.8 m/s) [7] [8]以及根据其他超声心动图参数确定其肺动脉高压的严重程度。肺动脉高压是一个重大的全球健康问题。所有年龄组都受到影响。目前的估计表明,PH患病率占全球人口的约1%。由于PH存在心脏和肺部原因,在65岁以上人群患病率更高可达10%,据估算,我国约有1200万肺动脉高压患者[9]。慢性阻塞性肺病,是肺动脉高压第二大常见病因。无论基础疾病如何,发生PH都与症状恶化和死亡率增加有关[10]

目前慢阻肺合并肺动脉高压的患者越来越多,本篇综述将总结慢阻肺合并肺动脉高压的相关危险因素,使临床工作者及早地发现、诊治COPD患者,延缓病程进展,避免肺动脉高压的发生,提高患者的生活质量。

2. COPD与肺动脉高压的关系

慢性阻塞性肺病患者常合并心血管疾病、代谢综合征、焦虑等多种慢性病[11]。严重影响患者住院和死亡的风险。因此,对慢阻肺患者均应积极寻找合并症,并给予正确治疗。PH是COPD自然病程中的重要并发症。慢性阻塞性肺病人群中PH的全球发病率非常高,约30%~70% [12],全球慢性阻塞性肺病全球倡议(Global Initiative for Chronic Obstructive Lung Disease, GOLD)显示,高达90%的患者存在轻至中度PH [13]。肺动脉高压是慢性阻塞性肺疾病进展过程中的重要病理生理特征,其形成机制与肺血管床减少、慢性缺氧及慢性气道炎症所致肺动脉收缩和血管重塑有关。研究显示PH在COPD患者中的发生率主要取决于疾病的严重程度,多数患者表现为中度增高,约1%~4%患者有严重肺动脉压力增高[13]。虽然COPD患者肺动脉压力增高趋势较慢,但肺动脉压力是影响COPD患者死亡率的重要负性调控因素[14]。既往研究表明平均肺动脉压力大于25 mmHg的COPD患者5年生存率仅36%。早期识别及诊治肺动脉高压对改善COPD患者疾病预后具有重要意义。

3. COPD合并肺动脉高压的危险因素

3.1. 性别

女性是COPD合并肺动脉高压的危险因素。性别是指区分男性和女性生物体的初级和次级性征,包括解剖学和生理学。男性和女性从受孕开始的遗传差异导致疾病发生率、表现和对治疗反应的性别差异[15]。有关研究发现慢性肺病占女性死亡人数的6.2%,男性死亡人数的5.2%,其中慢性阻塞性肺病和哮喘是主要原因[16]。尽管女性吸烟量少于男性,但女性COPD的患病率较高,这表明女性可能更容易受到香烟烟雾的影响[17]。也有研究发现,性别差异同样也存在于肺动脉高压患者中,肺动脉高压在女性中的发生率高于男性,而男性的生存率比女性差。女性对肺动脉高压的易感性早已为人所知,最近的数据显示,女性与男性的比例为4:1 [18]。女性性激素雌激素和雌激素代谢的变化会改变FPAH风险,并且该疾病在骨形态发生蛋白受体2型(BMPR-II)突变携带者中的外显率在女性中增加。一些证据表明雌激素在肺循环中具有致病性,从而增加了女性患PAH的风险[19]。最近的研究还表明,雌激素代谢可能在PAH的发展和进展中至关重要,研究表明下游代谢物(如16α-羟基雌酮)在几种形式的实验性肺动脉高压(PH)中上调,并可导致肺动脉平滑肌细胞增殖和随后的血管重塑。相反,其他雌激素代谢物(如2-甲氧基雌二醇)已被证明在PAH的背景下具有保护作用。雌激素还可能上调PAH其他关键介质(如血清素)的信号通路[20] [21]。血清素(5-HT)可通过色氨酸羟化酶1 (Tph1)在肺动脉的内皮细胞中合成[22] [23],然后以旁分泌方式作用于下面的肺动脉平滑肌细胞和肺动脉成纤维细胞,导致肺血管收缩和重塑。

3.2. 吸烟

吸烟是慢性阻塞性肺病的主要和最常见的危险因素[24]。香烟烟雾(CS)含有大量的有毒物质[25],会导致粘液腺分泌物增加和阻塞性细支气管炎,从而加重肺组织病变的进展[26],同时还可以刺激肺组织产生大量的活性氧(ROS),从而导致氧化和抗氧化系统的失衡[27],引起细胞功能障碍并诱导肺血管内皮细胞凋亡,促进慢性阻塞性肺病的进展。暴露于香烟烟雾会直接影响肺血管细胞,增强血管内皮生长因子(VEGF)表达、降低一氧化氮合酶水平,从而释放出异常产生的促炎介质,其可以控制血管细胞增殖和血管收缩/血管舒张。有研究发现[28],在吸烟患者中肺动脉内膜增厚和血管增厚是其早期表现,并且与其他吸烟相关肺损伤的终点(如毛细支气管炎和肺气肿)的严重程度相关。除此之外,在吸烟者中,由于平滑肌和其他细胞的增殖(即肺血管系统的重塑)引起的血管收缩和管壁增厚,肺血管阻力增加,最终导致肺动脉高压的发生。

3.3. 缺氧

在COPD的病理生理过程中,低氧血症的发生引起肺血管内皮功能障碍进而导致收缩因子和舒张因子的分泌,舒张因子的合成或释放受损会诱导持续的血管收缩和肺动脉重塑,降低血管床,增加血管阻力,最终导致肺动脉高压的发生[29]

科特[30]等人研究发现,COPD的病死率随海拔高度每升高95米而升高约1/10。长期持续缺氧的血液刺激会使红细胞增加和血液粘度增加,同时伴有血管缺氧痉挛和血管内皮细胞损伤[31]。除此之外,慢性缺氧,或长时间的缺氧,还会介导缺氧诱导因子缺氧诱导因子-1α (HIF-1α)稳定并转移到细胞核中,与缺氧诱导因子-1β (HIF-1β)形成活性复合物并启动基因转录,引发体内的炎症反应,导致各种生理变化和组织损伤。缺氧期间活性氧(ROS)的产生减少,导致HIF激活和抑制Kv1.5通道。该过程最终诱导细胞去极化,更多的钙离子通过L型电压门控钙通道进入细胞质,从而导致肺血管收缩并促进HPH进展[32] [33]。因此缺氧被认为是COPD合并肺动脉高压的重要原因。

3.4. 炎症反应

近年来,越来越多的研究发现,炎症反应参与COPD和肺动脉高压病理生理过程。白细胞介素-1β (IL-1β) [34]是响应炎症小体激活而释放的关键细胞因子,是炎症反应的重要介质。有研究发现,PAH患者的血清白细胞介素-2 (IL-2)、白细胞介素-6 (IL-6)和IL-1β水平明显高于健康个体,且与患者预后直接相关[35]。其通过募集免疫细胞和调节免疫细胞功能来参与PAH血管重塑。肺血管周围存在大量炎症细胞浸润,如巨噬细胞、中性粒细胞、T淋巴细胞、B淋巴细胞、树突状细胞和肥大细胞。巨噬细胞,通过协调肺部炎症的发生和消退参与PH的发病机制。中性粒细胞和巨噬细胞产生的炎症因子IL-6可诱导弹性蛋白酶和氧自由基的产生,增加肺血管的通透性,加重肺组织的破坏[36]。研究发现,肺动脉平滑肌细胞增殖与肿瘤坏死因子(TNF-α)水平升高有关,TNF-α过度分泌可促进肺血管重塑,导致肺动脉高压的发生,其机制与TNF-α诱导炎症反应,促进肉芽肿和组织纤维化的形成,减少肺动脉平滑肌细胞前列腺素的产生有关[37]。TNF-α还可调节IL-6等细胞因子的分泌,增加毛细血管通透性、导致严重的血流动力学紊乱。另有研究发现,TNF-α在COPD中表达上调,其与判断COPD发展严重程度和预后相关[38] [39]。慢性阻塞性肺疾病是一种非特异性炎症[40],炎症细胞激活后,炎症介质释放增加常累及气道、肺实质和肺血管。因此炎症在COPD相关PH病理改变中发挥重要作用。

3.5. 遗传易感性

众多的研究表明,II型骨形态发生蛋白受体(BMPR2)基因的突变会显著增加患遗传性PAH的风险。[41]其机制可能与PAH中异常的骨形态发生蛋白信号传导和表观遗传失调部分,通过诱导非偶联糖酵解的Warburg线粒体代谢状态来促进细胞增殖有关。另有研究发现[42],血管紧张素转换酶(ACE)及其同源血管紧张素转换酶2 (ACE2)功能基因多态性对慢性阻塞性肺病(COPD)、肺动脉高压(PH)的易感性、病程和结局具有影响。ACE和ACE2被认为是主要的肾素–血管紧张素系统(RAS)调节因子之一,具有调节肺循环和血压的重要作用。由此可见,基因表达功能障碍及基因多态性(SNP)在COPD和PH的发生发展中具有一定的相关性。从2016年3月到2018年10月[43],招募了475例COPD或COPD合并肺动脉高压患者参加的研究发现,携带rs8713基因座C等位基因的COPD患者发生PH的风险是A等位基因携带者的2.82倍(95%置信区间[CI],1.94~4.08;p < 0.001)。携带rs1049337基因座T等位基因的COPD患者发生PH的风险显著低于C等位基因携带者(比值比[OR],0.48;95% CI,0.37~0.63;p < 0.001)。ACGAC单倍型被发现是COPD联合PH的高度危险因素(OR, 2.24; 95% CI, 1.20~4.17; p = 0.01)。无论PH状态如何,具有rs8713C等位基因的患者的has-miR-451和caveolin1蛋白的血浆水平均显著低于野生型(WT)等位基因患者。相反,rs1049337突变C等位基因患者的has-miRN-451和caveolin-1水平显著高于WT T等位基因(p < 0.05)。COPD或COPD合并PH患者血浆has-miR-451和caveolin-1水平呈正相关(r = 0.72和0.63)。结果表明,CAV1基因位点rs8713和rs1049337的基因多态性与COPD患者的PH风险相关。其潜在机制可能与SNP对has-miR-451调节caveolin-1的影响有关。此外,内皮型一氧化氮合酶和5-羟色胺的基因多态性、TNF-α-rs1800629、TGF-β1-rs6957、IL13-rs1800925和IL6-rs1800796变异、rs198389、rs6668352和rs198388位点BNP基因型[44] [45]也被证实与COPD和PH的发生有关,综上所述,遗传表达与COPD和PH的易感性、病程、预后有着密不可分的关系。

3.6. 维生素D缺乏

维生素D是一种脂溶性类固醇,其经典作用是调节钙的摄取和体内平衡、骨代谢以及细胞生长和分裂。进一步的研究发现,维生素D还具有调节免疫及抗炎特性。血清维生素D浓度低被认为是慢性肺病的可能危险因素。几项横断面研究还发现,维生素D水平较低与肺功能下降有关[46],补充维生素D可显著改善COPD 患者的肺功能和疾病严重程度[47]。其机制可能与维生素D通过促进细胞增殖和减少细胞凋亡来改善肺功能以及维生素D保护上皮黏膜中的先天免疫和适应性免疫系统,维持上皮黏膜的完整性,抑制上皮细胞中的核因子(NF) NF-κB,降低细胞因子的表达[48],缓解气道炎症有关。Demir [49]等人发现,维生素D缺乏症患者的肺动脉收缩压高于正常人群,这表明维生素D缺乏症可能与PH有关。其与维生素D缺乏下调全电压依赖性钾电流密度和酸敏感钾电流(TASK-1)通道并诱导肺血管功能障碍以及促使血浆肾素活性升高从而诱发心室重塑、动脉血压升高有关。此外,慢性阻塞性肺病患者缺氧越严重,肺血管重塑越显著,肺动脉压相对可能更高。一项关于探讨维生素D与伴有PH的COPD之间关系的研究发现[50],COPD患者的维生素D水平低于正常人;同时,伴有PH的COPD患者的维生素D水平低于单纯的COPD患者。发现维生素D水平与肺动脉压呈负相关,这可能对未来临床医生治疗慢性缺氧PH有提示。

3.7. 高尿酸血症

尿酸(uricacid, UA)主要在肝脏、肠道和血管内皮中合成,是嘌呤的最终代谢产物[51]。血清尿酸盐具有促氧化和炎症刺激作用,可以诱导炎症标志物的表达并激活NOD样受体热蛋白结构域相关蛋白3 (NLRP3)炎症小体,诱导白细胞的活化,从而对内皮细胞造成损害[52] [53]。尿酸还可以增强了精氨酸酶的活性,导致内皮细胞中的NO降低[54]。此外,Liu等人[55]发现,从高尿酸血症患者身上分离出的细胞外囊泡可能会通过衰老相关途径加剧全身炎症和气道炎症反应。一项基于医院的队列和孟德尔随机化研究发现[56],与血清尿酸正常人群相比,高尿酸血症人群COPD的发病率更高,高尿酸血症与发生COPD 的风险增加相关,当血清尿酸盐浓度高于参考值(420 umol/L)时,发生COPD的风险会迅速增加[57]。另外一项针对114,979人普通人群的孟德尔随机化观察性分析中,发现高血尿酸血症与肺功能较差以及呼吸道症状和COPD风险较高相关;尿酸与PH等心血管疾病密切相关,高尿酸血症通过内皮功能障碍、氧化应激、炎症反应和肾素–血管紧张素系统的激活促进PH的发生和进展。一项系统评价和荟萃分析发现[58],高尿酸血症与PH的发展、严重程度和PH的不良预后有关。

4. COPD合并肺动脉高压的治疗

COPD合并肺动脉高压的治疗主要包括生活方式干预、长期氧疗、药物治疗以及其他新兴疗法等。生活方式的干预,如戒烟、加强锻炼、健康的饮食都可以降低肺动脉高压的风险。长期氧疗(long-term oxygen therapy, LTOT)可改善COPD低氧血症患者的生存率及预后,并且还被证明可在6个月内降低mPAP,LTOT 15至18小时/天可以逆转高比例重度COPD患者肺动脉高压的进展,可能是通过减轻缺氧性肺血管收缩[59]。然而,对于基线血氧饱和度高于89%阈值的患者,LTOT的生存获益尚未得到证实[60]。药物治疗主要包括钙通道阻滞剂(CCB)、磷酸二酯酶-5抑制剂(PDE-5)、内皮素受体拮抗剂(ERAs)、可溶性鸟苷酸环化酶激动剂(sGCS)、前列环素(PGIS)及其类似物、吸入性肺血管扩张剂、他汀类药物以及其他特异性药物等[61]。新兴疗法如基于干细胞的疗法、基因转移和基于表观遗传学的疗法以及低频超声治疗[62] [63]等,但目前还处于实践探索中,其可行性和有效性还需要大量的临床研究证明。

5. 预后

COPD平均肺动脉压(mPAP)升高对预后的负面影响已广为人知。一项对175例中重度COPD患者进行的研究发现,mPAP高于20 mmHg的患者在4年和7年随访时生存率显著降低,mPAP < 20 mmHg的患者4年生存率为71.8%,20 mmHg以上患者的生存率为49.4% [64]。在此项研究中,mPAP与PaO2是预测生存率的强因素。最近的许多研究表明,PH-COPD的死亡负担与特发性PAH (IPAH)一样高,2015年的一项研究纳入了COMPERA登记处的1472例PH患者,结果显示IPAH组的3年生存率为70.7%,PH-COPD组的3年生存率仅为58.8%。与PH-ILD (左心疾病)相比,PH-COPD在1年、2年和3年的死亡率较低。2019年的一项研究比较了51例慢性肺病所致PH患者和83例IPAH患者,结果显示,尽管平均肺动脉压和肺血管阻力(PVR)较低,但前者的结局同样较差[65]。PVR为7个Wood单位或更高,死亡风险高出3倍,并且与死亡率的相关性比mPAP更强。除了总生存期显著恶化外,CT显示肺动脉扩张(提示平均肺动脉压升高)与需要住院治疗的重度COPD加重风险增加有关[66]

6. 总结

综上,COPD合并肺动脉高压的常见危险因素有性别、吸烟、炎症、缺氧、遗传易感性、维生素D缺乏、高尿酸血症等。COPD患者的肺动脉压力变化与生存、死亡以及预后紧密相关。早期识别COPD患者并进行相关治疗措施干预,对于延缓患者病情进展,提高患者生活质量尤为重要。

NOTES

*通讯作者。

参考文献

[1] Celli, B., Fabbri, L., Criner, G., Martinez, F.J., Mannino, D., Vogelmeier, C., et al. (2022) Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. American Journal of Respiratory and Critical Care Medicine, 206, 1317-1325.
https://doi.org/10.1164/rccm.202204-0671pp
[2] Boers, E., Barrett, M., Su, J.G., Benjafield, A.V., Sinha, S., Kaye, L., et al. (2023) Global Burden of Chronic Obstructive Pulmonary Disease through 2050. JAMA Network Open, 6, e2346598.
https://doi.org/10.1001/jamanetworkopen.2023.46598
[3] Wang, C., Xu, J., Yang, L., Xu, Y., Zhang, X., Bai, C., et al. (2018) Prevalence and Risk Factors of Chronic Obstructive Pulmonary Disease in China (the China Pulmonary Health [CPH] Study): A National Cross-Sectional Study. The Lancet, 391, 1706-1717.
https://doi.org/10.1016/s0140-6736(18)30841-9
[4] 世界卫生组织十大死因[EB/OL].
http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death, 2024-04-30.
[5] Rajagopal, S. and Yu, Y.A. (2022) The Pathobiology of Pulmonary Arterial Hypertension. Cardiology Clinics, 40, 1-12.
https://doi.org/10.1016/j.ccl.2021.08.001
[6] Humbert, M., Kovacs, G., Hoeper, M.M., Badagliacca, R., Berger, R.M.F., Brida, M., et al. (2022) 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Respiratory Journal, 61, Article ID: 2200879.
https://doi.org/10.1183/13993003.00879-2022
[7] Arcasoy, S.M., Christie, J.D., Ferrari, V.A., Sutton, M.S., Zisman, D.A., Blumenthal, N.P., Pochettino, A. and Kotloff, R.M. (2003) Echocardiographic Assessment of Pulmonary Hypertension in Patients with Advanced Lung Disease. American Journal of Respiratory and Critical Care Medicine, 167, 735-740.
[8] Fisher, M.R., Forfia, P.R., Chamera, E., Housten-Harris, T., Champion, H.C., Girgis, R.E., Corretti, M.C. and Hassoun, P.M. (2009) Accuracy of Doppler Echocardiography in the Hemodynamic Assessment of Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 179, 615-621.
[9] Hoeper, M.M., Humbert, M., Souza, R., Idrees, M., Kawut, S.M., Sliwa-Hahnle, K., et al. (2016) A Global View of Pulmonary Hypertension. The Lancet Respiratory Medicine, 4, 306-322.
https://doi.org/10.1016/s2213-2600(15)00543-3
[10] NHS数字. 国家肺动脉高压审计第10次年度报告[Z]. 英国, 2018-2019年.
[11] Kahnert, K., Jörres, R.A., Behr, J. and Welte, T. (2023) The Diagnosis and Treatment of COPD and Its Comorbidities. Deutsches Ärzteblatt International, 120, 434-444.
https://doi.org/10.3238/arztebl.m2023.0027
[12] Klinger, J.R. (2016) Group III Pulmonary Hypertension. Cardiology Clinics, 34, 413-433.
https://doi.org/10.1016/j.ccl.2016.04.003
[13] Zhang, L., Liu, Y., Zhao, S., Wang, Z., Zhang, M., Zhang, S., et al. (2022) The Incidence and Prevalence of Pulmonary Hypertension in the COPD Population: A Systematic Review and Meta-Analysis. International Journal of Chronic Obstructive Pulmonary Disease, 17, 1365-1379.
https://doi.org/10.2147/copd.s359873
[14] Seeger, W., Adir, Y., Barberà, J.A., Champion, H., Coghlan, J.G., Cottin, V., et al. (2013) Pulmonary Hypertension in Chronic Lung Diseases. Journal of the American College of Cardiology, 62, D109-D116.
https://doi.org/10.1016/j.jacc.2013.10.036
[15] Mauvais-Jarvis, F., Bairey Merz, N., Barnes, P.J., Brinton, R.D., Carrero, J., DeMeo, D.L., et al. (2020) Sex and Gender: Modifiers of Health, Disease, and Medicine. The Lancet, 396, 565-582.
https://doi.org/10.1016/s0140-6736(20)31561-0
[16] Heron, M. (2019) Deaths: Leading Causes for 2017. National Vital Statistics Reports, 68, 1-77.
[17] Sorheim, I.C., Johannessen, A., Gulsvik, A., Bakke, P.S., Silverman, E.K. and DeMeo, D.L. (2010) Gender Differences in COPD: Are Women More Susceptible to Smoking Effects than Men? Thorax, 65, 480-485.
https://doi.org/10.1136/thx.2009.122002
[18] Mair, K.M., Johansen, A.K.Z., Wright, A.F., Wallace, E. and MacLean, M.R. (2014) Pulmonary Arterial Hypertension: Basis of Sex Differences in Incidence and Treatment Response. British Journal of Pharmacology, 171, 567-579.
https://doi.org/10.1111/bph.12281
[19] Hye, T., Dwivedi, P., Li, W., Lahm, T., Nozik-Grayck, E., Stenmark, K.R., et al. (2021) Newer Insights into the Pathobiological and Pharmacological Basis of the Sex Disparity in Patients with Pulmonary Arterial Hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 320, L1025-L1037.
https://doi.org/10.1152/ajplung.00559.2020
[20] Jenkins, C. (2021) Differences between Men and Women with Chronic Obstructive Pulmonary Disease. Clinics in Chest Medicine, 42, 443-456.
https://doi.org/10.1016/j.ccm.2021.06.001
[21] Martin, Y.N. and Pabelick, C.M. (2014) Sex Differences in the Pulmonary Circulation: Implications for Pulmonary Hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 306, H1253-H1264.
https://doi.org/10.1152/ajpheart.00857.2013
[22] Dempsie, Y. and MacLean, M.R. (2008) Pulmonary Hypertension: Therapeutic Targets within the Serotonin System. British Journal of Pharmacology, 155, 455-462.
[23] MacLean, M.R., Fanburg, B., Hill, N., Lazarus, H.M., Pack, T.F., Palacios, M., Penumatsa, K.C. and Wring, S.A. (2022) Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. Comprehensive Physiology, 12, 4103-4118.
[24] Song, Q., Chen, P. and Liu, X. (2021) The Role of Cigarette Smoke-Induced Pulmonary Vascular Endothelial Cell Apoptosis in COPD. Respiratory Research, 22, Article No. 39.
https://doi.org/10.1186/s12931-021-01630-1
[25] Morgan, J.C., Byron, M.J., Baig, S.A., Stepanov, I. and Brewer, N.T. (2017) How People Think about the Chemicals in Cigarette Smoke: A Systematic Review. Journal of Behavioral Medicine, 40, 553-564.
https://doi.org/10.1007/s10865-017-9823-5
[26] Maestrelli, P., Saetta, M., Mapp, C.E. and Fabbri, L.M. (2001) Remodeling in Response to Infection and Injury. American Journal of Respiratory and Critical Care Medicine, 164, S76-S80.
https://doi.org/10.1164/ajrccm.164.supplement_2.2106067
[27] Domej, W., Oettl, K. and Renner, W. (2014) Oxidative Stress and Free Radicals in COPD—Implications and Relevance for Treatment. International Journal of Chronic Obstructive Pulmonary Disease, 9, 1207-1224.
[28] Ghio, A.J., Pavlisko, E.N., Roggli, V.L., Todd, N.W. and Sangani, R.G. (2022) Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis. International Journal of Chronic Obstructive Pulmonary Disease, 17, 117-140.
https://doi.org/10.2147/copd.s337354
[29] Gao, Y., Chen, T. and Raj, J.U. (2016) Endothelial and Smooth Muscle Cell Interactions in the Pathobiology of Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 54, 451-460.
https://doi.org/10.1165/rcmb.2015-0323tr
[30] Coté, T.R., Stroup, D.F., Dwyer, D.M., Horan, J.M. and Peterson, D.E. (1993) Chronic Obstructive Pulmonary Disease Mortality. Chest, 103, 1194-1197.
https://doi.org/10.1378/chest.103.4.1194
[31] Gredic, M., Blanco, I., Kovacs, G., Helyes, Z., Ferdinandy, P., Olschewski, H., et al. (2020) Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease. British Journal of Pharmacology, 178, 132-151.
https://doi.org/10.1111/bph.14979
[32] He, Y., Fang, X., Shi, J., Li, X., Xie, M. and Liu, X. (2020) Apigenin Attenuates Pulmonary Hypertension by Inducing Mitochondria-Dependent Apoptosis of PASMCs via Inhibiting the Hypoxia Inducible Factor 1α-KV1.5 Channel Pathway. Chemico-Biological Interactions, 317, Article ID: 108942.
https://doi.org/10.1016/j.cbi.2020.108942
[33] Zhao, R., Jiang, S., Zhang, L. and Yu, Z. (2019) Mitochondrial Electron Transport Chain, ROS Generation and Uncoupling (Review). International Journal of Molecular Medicine, 44, 3-15.
https://doi.org/10.3892/ijmm.2019.4188
[34] Hu, Y., Chi, L., Kuebler, W.M. and Goldenberg, N.M. (2020) Perivascular Inflammation in Pulmonary Arterial Hypertension. Cells, 9, Article No. 2338.
https://doi.org/10.3390/cells9112338
[35] Zuo, Y., Li, B., Gao, M., Xiong, R., He, R., Li, N., et al. (2024) Novel Insights and New Therapeutic Potentials for Macrophages in Pulmonary Hypertension. Respiratory Research, 25, Article No. 147.
https://doi.org/10.1186/s12931-024-02772-8
[36] Guo, P., Li, R., Piao, T.H., Wang, C.L., Wu, X.L. and Cai, H.Y. (2022) Pathological Mechanism and Targeted Drugs of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 17, 1565-1575.
https://doi.org/10.2147/copd.s366126
[37] Itoh, A., Nishihira, J., Makita, H., Miyamoto, K., Yamaguchi, E. and Nishimura, M. (2003) Effects of IL‐1β, TNF‐α, and Macrophage Migration Inhibitory Factor on Prostacyclin Synthesis in Rat Pulmonary Artery Smooth Muscle Cells. Respirology, 8, 467-472.
https://doi.org/10.1046/j.1440-1843.2003.00491.x
[38] Sutendra, G., Dromparis, P., Bonnet, S., Haromy, A., McMurtry, M.S., Bleackley, R.C., et al. (2011) Pyruvate Dehydrogenase Inhibition by the Inflammatory Cytokine TNFα Contributes to the Pathogenesis of Pulmonary Arterial Hypertension. Journal of Molecular Medicine, 89, 771-783.
https://doi.org/10.1007/s00109-011-0762-2
[39] Huang, H. and Yang, L. (2023) Research Progress of Inflammatory Factors in Chronic Obstructive Pulmonary Disease with Pulmonary HyperTension at High Altitude. Alternative Therapies in Health and Medicine, 29, 689-693.
[40] Singh, S., Verma, S.K., Kumar, S., Ahmad, M.K., Nischal, A., Singh, S.K., et al. (2018) Correlation of Severity of Chronic Obstructive Pulmonary Disease with Potential Biomarkers. Immunology Letters, 196, 1-10.
https://doi.org/10.1016/j.imlet.2018.01.004
[41] Thenappan, T., Ormiston, M.L., Ryan, J.J. and Archer, S.L. (2018) Pulmonary Arterial Hypertension: Pathogenesis and Clinical Management. BMJ, 360, j5492.
https://doi.org/10.1136/bmj.j5492
[42] Zhang, F., Chen, A., Pan, Y., Wang, X., Xu, Y., Desai, A.A., et al. (2021) Research Progress on Pulmonary Arterial Hypertension and the Role of the Angiotensin Converting Enzyme 2-Angiotensin-(1-7)-Mas Axis in Pulmonary Arterial Hypertension. Cardiovascular Drugs and Therapy, 36, 363-370.
https://doi.org/10.1007/s10557-020-07114-6
[43] Li, M., Cai, W., Chen, Y. and Dong, L. (2019) The cav1 Gene 3’ Untranslated Region Single Nucleotide Polymorphisms Are Associated with the Risk of Pulmonary Hypertension in Chinese Han Chronic Obstructive Pulmonary Patients. Genetic Testing and Molecular Biomarkers, 23, 634-643.
https://doi.org/10.1089/gtmb.2019.0053
[44] Masjedy, A., Salesi, M., Ahmadi, A., Salimian, J. and Azimzadeh Jamalkandi, S. (2023) Association between Single-Nucleotide Polymorphism of Cytokines Genes and Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Cytokine, 171, Article ID: 156352.
https://doi.org/10.1016/j.cyto.2023.156352
[45] Jin, G., Chen, Z., Zhang, J., Song, J., Shi, J. and Zhou, B. (2018) Association of Brain Natriuretic Peptide Gene Polymorphisms with Chronic Obstructive Pulmonary Disease Complicated with Pulmonary Hypertension and Its Mechanism. Bioscience Reports, 38, BSR20180905.
https://doi.org/10.1042/bsr20180905
[46] Li, M., Zhao, L., Hu, C., Li, Y., Yang, Y., Zhang, X., et al. (2024) Improvement of Lung Function by Micronutrient Supplementation in Patients with COPD: A Systematic Review and Meta-Analysis. Nutrients, 16, Article No. 1028.
https://doi.org/10.3390/nu16071028
[47] Ganji, V., Al-Obahi, A., Yusuf, S., Dookhy, Z. and Shi, Z. (2020) Serum Vitamin D Is Associated with Improved Lung Function Markers but Not with Prevalence of Asthma, Emphysema, and Chronic Bronchitis. Scientific Reports, 10, Article No. 11542.
https://doi.org/10.1038/s41598-020-67967-7
[48] Sîrbe, C., Rednic, S., Grama, A. and Pop, T.L. (2022) An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. International Journal of Molecular Sciences, 23, Article No. 9784.
https://doi.org/10.3390/ijms23179784
[49] Demir, M., Uyan, U., Keçeoçlu, S. and Demir, C. (2013) The Relationship between Vitamin D Deficiency and Pulmonary Hypertension. Prague Medical Report, 114, 154-161.
https://doi.org/10.14712/23362936.2014.17
[50] Atamañuk, A.N., Litewka, D.F., Baratta, S.J., Seropian, I.M., Perez Prados, G., Payaslian, M.O., et al. (2019) Vitamin D Deficiency among Patients with Pulmonary Hypertension. BMC Pulmonary Medicine, 19, Article No. 258.
https://doi.org/10.1186/s12890-019-1011-7
[51] El Ridi, R. and Tallima, H. (2017) Physiological Functions and Pathogenic Potential of Uric Acid: A Review. Journal of Advanced Research, 8, 487-493.
https://doi.org/10.1016/j.jare.2017.03.003
[52] Kang, D., Park, S., Lee, I. and Johnson, R.J. (2005) Uric Acid-Induced C-Reactive Protein Expression. Journal of the American Society of Nephrology, 16, 3553-3562.
https://doi.org/10.1681/asn.2005050572
[53] Ruggiero, C., Cherubini, A., Miller, E., Maggio, M., Najjar, S.S., Lauretani, F., et al. (2007) Usefulness of Uric Acid to Predict Changes in C-Reactive Protein and Interleukin-6 in 3-Year Period in Italians Aged 21 to 98 Years. The American Journal of Cardiology, 100, 115-121.
https://doi.org/10.1016/j.amjcard.2007.02.065
[54] Watanabe, T., Ishikawa, M., Abe, K., Ishikawa, T., Imakiire, S., Masaki, K., et al. (2021) Increased Lung Uric Acid Deteriorates Pulmonary Arterial Hypertension. Journal of the American Heart Association, 10, e022712.
https://doi.org/10.1161/jaha.121.022712
[55] Liu, X., Li, Z., Zheng, Y., Wang, W., He, P., Guan, K., et al. (2022) Extracellular Vesicles Isolated from Hyperuricemia Patients Might Aggravate Airway Inflammation of COPD via Senescence-Associated Pathway. Journal of Inflammation, 19, Article No. 18.
https://doi.org/10.1186/s12950-022-00315-w
[56] Rao, B., Xie, D., Deng, Y., Ye, J., Zeng, X., Lin, A., et al. (2024) Robust Positive Association between Serum Urate and the Risk of Chronic Obstructive Pulmonary Disease: Hospital-Based Cohort and Mendelian Randomisation Study. BMJ Open Respiratory Research, 11, e002203.
https://doi.org/10.1136/bmjresp-2023-002203
[57] Kobylecki, C.J., Vedel-Krogh, S., Afzal, S., Nielsen, S.F. and Nordestgaard, B.G. (2017) Plasma Urate, Lung Function and Chronic Obstructive Pulmonary Disease: A Mendelian Randomisation Study in 114,979 Individuals from the General Population. Thorax, 73, 748-757.
https://doi.org/10.1136/thoraxjnl-2017-210273
[58] Uk Kang, T., Park, K.Y., Kim, H.J., Ahn, H.S., Yim, S. and Jun, J. (2018) Association of Hyperuricemia and Pulmonary Hypertension: A Systematic Review and Meta-Analysis. Modern Rheumatology, 29, 1031-1041.
https://doi.org/10.1080/14397595.2018.1537555
[59] Timms, R.M. (1985) Hemodynamic Response to Oxygen Therapy in Chronic Obstructive Pulmonary Disease. Annals of Internal Medicine, 102, Article No. 29.
https://doi.org/10.7326/0003-4819-102-1-29
[60] Long-Term Oxygen Treatment Trial Research Group, Albert, R.K., Au, D.H., Blackford, A.L., Casaburi, R., Cooper, J.A., et al. (2016) A Randomized Trial of Long-Term Oxygen for COPD with Moderate De-Saturation. The New England Journal of Medicine, 375, 1617-1627.
[61] Zhang, Z., Zhu, S., Wang, M., Wang, X., Tong, X., Wan, J., et al. (2022) New Progress in Diagnosis and Treatment of Pulmonary Arterial Hypertension. Journal of Cardiothoracic Surgery, 17, Article No. 216.
https://doi.org/10.1186/s13019-022-01947-y
[62] Bisserier, M., Pradhan, N. and Hadri, L. (2020) Current and Emerging Therapeutic Approaches to Pulmonary Hypertension. Reviews in Cardiovascular Medicine, 21, 163-179.
[63] Ostasevicius, V., Jurenas, V., Venslauskas, M., Kizauskiene, L., Zigmantaite, V., Stankevicius, E., et al. (2024) Low-Frequency Ultrasound for Pulmonary Hypertension Therapy. Respiratory Research, 25, Article No. 70.
https://doi.org/10.1186/s12931-024-02713-5
[64] Weitzenblum, E., Hirth, C., Ducolone, A., Mirhom, R., Rasaholinjanahary, J. and Ehrhart, M. (1981) Prognostic Value of Pulmonary Artery Pressure in Chronic Obstructive Pulmonary Disease. Thorax, 36, 752-758.
https://doi.org/10.1136/thx.36.10.752
[65] Awerbach, J.D., Stackhouse, K.A., Lee, J., Dahhan, T., Parikh, K.S. and Krasuski, R.A. (2019) Outcomes of Lung Disease-Associated Pulmonary Hypertension and Impact of Elevated Pulmonary Vascular Resistance. Respiratory Medicine, 150, 126-130.
https://doi.org/10.1016/j.rmed.2019.03.004
[66] Wells, J.M., Washko, G.R., Han, M.K., Abbas, N., Nath, H., Mamary, A.J., et al. (2012) Pulmonary Arterial Enlargement and Acute Exacerbations of COPD. New England Journal of Medicine, 367, 913-921.
https://doi.org/10.1056/nejmoa1203830