富电子AlnSi12?nN12 (n= 1,2和4)团簇的非线性光学特性研究
Theoretical Study on the Nonlinear Optical Properties of Electron Redundant AlnSi12?nN12 (n = 1, 2 and 4) Clusters
DOI: 10.12677/ms.2024.146096, PDF, HTML, XML,    科研立项经费支持
作者: 王金霞:重庆移通学院,公共基础教学部,重庆;杨慧慧*, 杨苗燕:西安航空学院,理学院,陕西 西安
关键词: AlnSi12?nN12团簇超极化率非线性光学AlnSi12?nN12 Clusters Hyper-Polarizability Nonlinear Optical Property
摘要: 本文采用密度泛函理论的B3LYP和CAM-B3LYP方法,详细计算和研究了AlnSi12−nN12 (n = 1,2和4)团簇的线性和非线性光学特征。由第一超极化率的计算结果表明,非对称的体系在外场中容易极化,具有较高的超极化率,因此以SiN为基础的Al掺杂笼状结构在非线性光学材料方面有潜在应用。
Abstract: The linear and nonlinear optical properties of AlnSi12−nN12 (n = 1, 2 and 4) clusters are explored by using B3LYP and CAM-B3LYP. The results show that AlnSi12−nN12 cages large hyper-polarizabilities and so potential applications as nonlinear optical materials. As the lone pair electrons are loosely bond, and are easily polarized in electric field.
文章引用:王金霞, 杨慧慧, 杨苗燕. 富电子AlnSi12?nN12 (n= 1,2和4)团簇的非线性光学特性研究[J]. 材料科学, 2024, 14(6): 861-866. https://doi.org/10.12677/ms.2024.146096

1. 引言

自1985年H. W. Kroto [1]发现了包含60个碳原子富勒烯结构以来,研究者对碳纳米材料的探究从未中断过。除碳元素外,人们也致力寻找发现其它元素构成的富勒烯结构。N. G. Szwacki [2]在2007年报道了与C60巴基球相似B80的结构,zhai [3]等在2014年发现了40个硼原子组成的类富勒烯笼状结构。在元素周期表中C是第四主族的元素,B是第三主族的元素,比C少一个电子,N是第五主族的元素,比C多一个电子,如果用一对BN原子替换C富勒烯结构中的一对C原子,将会形成与碳材料等电子的体系。因此第三主族和第五主族元素形成的BN、AlN体系也受到普遍关注,如BN纳米管、AlN纳米锥、六角形AlN纳米线、B12N12、B20N20、B24N24、B28N28和B36N36笼等[4]-[10]

AlN和BN团簇具有相似的几何结构,大量研究证实由四元环和六元环构成的B12N12和Al12N12有较强的稳定性[11] [12] [13] [14] [15]。在AlN体系中掺杂不同的原子可以有效地调控其稳定性和电子性质[16] [17] [18] [19]。Taniyasu等通过掺杂Si和Mg原子,合成n型和p型氮化铝二极管[20];Niu等发现AlN体系中掺杂碱金属原子Li、Na、K改变AlN纳米结构的电子结构,提高其非线性光学特性[21];Shakerzadeh研究了第三、四、五主族元素掺杂Al12N12团簇对其电子结构和非线性光学性质的调控[22]。将AlN体系中的Al原子用第四主族的元素取代时,由于第四主族的元素比第三主族的元素多一个电子,那么在一个Si2N2单元上会多两个电子,研究表明这两个电子以孤对电子的形式分布在一个Si原子的外侧[23] [24]。一般认为富电子体系在能量上不占优,因此相关研究也非常少。本文详细计算研究了AlnSi12−nN12 (n = 1,2和4)团簇的10个结构的极化率和第一超极化率,比较了两种不同方法的计算结构,讨论了AlSiN笼状结构的线性和非线性光学特性。

2. 计算方法

系统处于弱均匀电场时,系统的能量可用下式表示:

E( F )=E( 0 ) μ 0 F 1 2 α F 2 1 6 β F 3

μ 0 = E F | F=0 , α= 2 E F 2 | F=0 , β= 3 E F 3 | F=0

其中E(0)表示没有电场时体系的总能量,μ0αβ分别表示偶极矩、极化率和第一超极化率。

极化率和超极化化率的计算如下式:

α= 1 3 ( α xx + α yy + α zz )

β= ( β x 2 + β y 2 + β z 2 ) 1/2

其中

β i = 3 5 ( β iii + β ijj + β ikk ),i,j,k=x,y,z

极化率反应了体系的线性光学特性,α是3 × 3的二阶张量,有6个独立变量,分别是:αxxαxyαyyαxzαyzαzz。超极化率反应了体系的非线性光学特性,β0是3 × 3 × 3的一个三阶张量,有10个独立变量,分别是:βxxxβxxyβxyyβyyyβxxzβxyzβyyzβxzzβyzzβzzz

本文在计算过程中采用了密度泛函理论的B3LYP方法,考虑到传统的B3LYP模型在描述长程交换时存在不足,不能提供可靠的极化率和超极化率的结果,我们还采用了混合交换相关函数的CAM-B3LYP方法进行了比较计算。基组选用了三劈裂基组6-311+g(d),其外层轨道分裂成3组基函数,分别由3个、1个和1个Gauss型函数来拟合,并加入了极化和弥散函数。计算采用Gaussian09程序完成。

3. 结果与讨论

3.1. AlnSi12−nN12 (n = 1,2和4)团簇的几何结构和稳定性

AlnSi12−nN12 (n = 1,2和4)团簇的几何结构来源于文献[23]的报道。如图1所示,给出了AlSi11N12的两个低能异构体,Al2Si10N12和Al4Si8N12的四个低能异构体。AlnSi12−nN12团簇由四元环和六元环组成。AlSi11N12中Al原子由四元环和六元环共用,能量较低的结构AlSi11N12-1中,Al原子与两个N一个Si原子构成平面四元环结构,次稳定结构中,Al原子突出两个N一个Si原子构成平面。Al2Si10N12的能量最低结构中两个Al原子位于同一个四元环中,其它三个低能异构体中,Al原子位于同一个六元环中。Al4Si8N12的能量最低结构中四个Al原子位于相对的两个四元环中。

Figure 1. The lower energy isomers of AlnSi12−nN12 (n = 1, 2 and 4) clusters [23]

1. AlnSi12−nN12 (n = 1,2和4)团簇的低能异构体[23]

采用两种方法计算的AlnSi12−nN12 (n = 1,2和4)团簇的能量在表1中列出。从中1可看出B3LYP和CAM-B3LYP方法计算的团簇的能量非常一致,CAM-B3LYP计算的能量仅仅比B3LYP计算的结果高0.39 Hartree。从表1还可以看出AlSi11N12、Al2Si10N12和Al4Si8N12异构体之间的能量差仅约0.01 eV,说明不同异构体在能量上几乎是简并的。

Table 1. The energies of AlnSi12−nN12 (n = 1, 2 and 4) clusters calculated using different models (unit: Hartree)

1.不同方法计算的AlnSi12−nN12 (n = 1, 2和4)团簇的基态能量(单位:Hartree)


B3LYP/6-311+g(d)

CAM-B3LYP/6-311+g(d)

AlSi11N12-1

−4084.772

−4084.389

AlSi11N12-2

−4084.762

−4084.377

Al2Si10N12-1

−4037.768

−4037.380

Al2Si10N12-2

−4037.759

−4037.370

Al2Si10N12-3

−4037.758

−4037.369

Al2Si10N12-4

−4037.754

−4037.365

Al4Si8N12-1

−3943.754

−3943.361

Al4Si8N12-2

−3943.750

−3943.358

Al4Si8N12-3

−3943.749

−3943.357

Al4Si8N12-4

−3943.745

−3943.352

3.2. AlnSi12−nN12 (n = 1,2和4)团簇的线性光学特性

采用两种不同方法计算的AlnSi12−nN12 (n = 1,2和4)团簇的极化率在表2中给出。从表中可以看出B3LYP计算得到的极化率比CAM-B3LYP的算的结果大8%左右,但不同方法计算计算的不同异构体的极化率大小顺序一致。从表2还看到,不同异构体之间,能量较低的体系极化率较小,异构体的极化率大小与稳定性反相关。

Table 2. The polarizabilities of AlnSi12−nN12 (n = 1, 2 and 4) clusters calculated using different models (α) (unit: a.u)

2. 两种不同方法计算的AlnSi12−nN12 (n = 1,2和4)团簇的极化率(α) (单位:a.u)


B3LYP/6-311+g(d)

CAM-B3LYP/6-311+g(d)

AlSi11N12-1

353.931

326.791

AlSi11N12-2

359.371

332.085

Al2Si10N12-1

351.295

324.678

Al2Si10N12-2

358.912

327.981

Al2Si10N12-3

354.375

226.802

Al2Si10N12-4

360.226

329.176

Al4Si8N12-1

345.653

317.951

Al4Si8N12-2

350.790

319.902

Al4Si8N12-3

348.233

320.245

Al4Si8N12-4

355.380

322.066

3.3. AlnSi12−nN12 (n = 1,2和4)团簇的非线性光学特性

采用两种不同方法计算的AlnSi12−nN12 (n = 1,2和4)团簇的第一超极化率极化结构在表3中列出。B3LYP方法计算的超极化率比CAM-B3LYP方法的计算结果大3.5倍之多,两种方法计算结果差异如此之大,也说明了传统的B3LYP方法不能很好的描述第一超极化率,其原因是B3LYP方法不能很好地描述长程交换相互作用,而混合交换相关函数CAM-B3LYP修正了传统B3LYP方法的缺陷。计算体系的极化率时,B3LYP和CAM-B3LYP给出的结果基本一致,但是B3LYP方法严重高估了团簇的第一超极化率。

表3中还可以看出,具有高对称性的Al4Si8N12-1 (Ci对称性)团簇的第一超极化率为零,其它非对称性的富电子体系具有较大的超极化率,且AlnSi12−nN12 (n = 1,2和4)团簇的超极化率的大小与体系中Al原子的分布息息相关。AlSi11N12团簇体系中的AlSi11N12-1团簇的超极化率更大;Al2Si10N12团簇体系中的Al2Si10N12-2团簇的超极化率最大;Al4Si8N12团簇体系中的Al4Si8N12-4团簇的超极化率最大。计算结果显示富电子的AlSiN笼状结构显示了较强的非线性光学特性。

Table 3. The hyperpolarizabilities of AlnSi12−nN12 (n = 1, 2 and 4) clusters calculated using different models (β) (unit: a.u)

3. 两种不同方法计算的AlnSi12−nN12 (n = 1,2和4)团簇的第一超极化率(β) (单位:a.u)


B3LYP/6-311+g(d)

CAM-B3LYP/6-311+g(d)

AlSi11N12-1

2252.209

640.619

AlSi11N12-2

390.517

492.996

Al2Si10N12-1

2015.009

628.843

Al2Si10N12-2

3819.592

1028.123

Al2Si10N12-3

2599.888

593.958

Al2Si10N12-4

2578.225

890.497

Al4Si8N12-1

0.000

0.000

Al4Si8N12-2

3693.190

1031.952

Al4Si8N12-3

3636.581

1112.170

Al4Si8N12-4

5606.736

1571.378

4. 结论

团簇的极化率和超极化率可反应体系的线性和非线性光学特性。本文采用B3LYP和CAM-B3LYP方法计算了AlnSi12−nN12团簇的极化率和第一超极化率。计算结果表明两种方法计算的团簇的极化率结果比较一致,但在计算超极化率时B3LYP方法给出的结构较高。结果表明不同化学计量比的Al-Si-N体系的线性光学特性基本一致,极化率大小与AlnSi12−nN12团簇结构的稳定性顺序相反。高对称性的Al4Si8N12-1团簇的第一超极化率为零,其它非对称的富电子AlnSi12−nN12 (n = 1,2和4)团簇体系具有较高的超极化率,在非线性光学材料领域是具有一定的应用价值。

基金项目

陕西省自然科学基础研究计划(项目编号:2023-JC-QN-0085),陕西省教育厅专项科研计划项目(项目编号:22JK0423)。

NOTES

*通讯作者。

参考文献

[1] Kroto, H.W., Heath, J.R., O’Brien, S.C., et al. (1985) C60: Buckminsterfullerene. Nature, 318, 162-163.
https://doi.org/10.1038/318162a0
[2] Szwacki, N.G., Sadrzadeh, A. and Yakobson, B.I. (2007) B80 Fullerene: An Ab Initio Prediction of Geometry, Stability, and Electronic Structure. Physical Review Letters, 98, Article 166804.
https://doi.org/10.1103/PhysRevLett.98.166804
[3] Zhai, H.J., Zhao, Y.F., Li, W.L., et al. (2014) Observation of All-Boron Fullerene. Nature Chemistry, 6, 727-731.
https://doi.org/10.1038/nchem.1999
[4] Oku, T., Nishiwaki, A., Narita, I., et al. (2003) Formation and Structure of B24N24 Clusters. Chemical Physics Letters, 380, 620-623.
https://doi.org/10.1016/j.cplett.2003.08.096
[5] Oku, T., Narita, I. and Nishiwaki, A. (2004) Formation and Structures of B36N36 and Y@B36N36 Clusters Studied by High-Resolution Electron Microscopy and Mass Spectrometry. Journal of Physics and Chemistry of Solids, 65, 369-372.
https://doi.org/10.1016/j.jpcs.2003.09.010
[6] Oku, T., Nishiwaki, A. and Narita, I. (2004) Formation and Atomic Structures of BnNn (n=24-60) Cluster by Mass Spectrometry, High-Resolution Electron Microscopy and Molecular Orbital Calculations. Physica B: Condensed Matter, 351, 184-190.
https://doi.org/10.1016/j.physb.2004.06.007
[7] Chen, H., Zhang, H., Fu, L., et al. (2008) Nano Au-Decorated Boron Nitride Nanotubes: Conductance Modification and Field-Emission Enhancement. Applied Physics Letters, 92, Article 243105.
https://doi.org/10.1063/1.2943653
[8] Wu, Q., Hu, Z., Wang, X.Z., et al. (2003) Synthesis and Characterization of Faceted Hexagonal Aluminum Nitride Nanotuubes. Journal of the American Chemical Society, 125, 10176-10177.
https://doi.org/10.1021/ja0359963
[9] Costales, A., Blanco, M.A., Francisco, E., et al. (2006) First Principles Study of Neutral and Anionic (Medium-Size) Aluminum Nitride Clusters AlnNn, n=7-16. The Journal of Physical Chemistry B, 110, 4092-4098.
https://doi.org/10.1021/jp056569+
[10] Lei, W.W., Liu, D., Zhang, J., et al. (2009) Direct Synthesis, Growth Mechanism, and Optical Properties of 3D AlN Nanostructures with Urchin Shapes. Crystal Growth & Design, 9, 1489-1493.
https://doi.org/10.1021/cg800965p
[11] Beheshtian, J., Bagheri, Z., Kamfiroozi, M., et al. (2012) A Comparative Study on the B12N12, Al12N12, B12P12 and Al12P12 Fullerene-Like Cages. Journal of Molecular Modeling, 18, 2653-2658.
https://doi.org/10.1007/s00894-011-1286-y
[12] Chang, C., Patzer, A.B.C., Sedlmayr, E., et al. (2001) A Density Functional Study of Small (AlN)x Clusters: Structures, Energies, and Frequencies. Chemical Physics, 271, 283-292.
https://doi.org/10.1016/S0301-0104(01)00439-6
[13] Matxain, J.M., Eriksson, L.A., Mercero, J.M., et al. (2007) New Solids Based on B12N12 Fullerenes. The Journal of Physical Chemistry C, 111, 13354-13360.
https://doi.org/10.1021/jp073773j
[14] Li, J.L., He, T. and Yang, G.W. (2012) An All-Purpose Building Block: B12N12 Fullerene. Nanoscale, 4, 1665-1670.
https://doi.org/10.1039/c2nr11808d
[15] Liu, Z.F., Wang, X.Q., Liu, G.B., et al. (2013) Low-Density Nanoporous Phases of Group-III Nitrides Built from Sodalite Cage Clusters. Physical Chemistry Chemical Physics, 15, 8186-8198.
https://doi.org/10.1039/c3cp50814e
[16] Yu, J., Bai, X.D., Ahn, J., et al. (2000) Highly Oriented Rich Boron B-C-N Nanotubes by Bias-Assisted Hot Filament Chemical Vapor Deposition. Chemical Physics Letters, 323, 529-533.
https://doi.org/10.1016/S0009-2614(00)00546-7
[17] Luo, X., Guo, X., Liu, Z., et al. (2007) First-Principles Study of Wurtzite BC2N. Physical Review B, 76, Article 092107.
https://doi.org/10.1103/PhysRevB.76.092107
[18] Fan, X.F., Zhu, Z., Shen, Z.X. and Kuo, J.L. (2008) On the Use of Bond-Counting Rules in Predicting Thestability of C12B6N6 Fullerene. The Journal of Physical Chemistry C, 112, 15691-15696.
https://doi.org/10.1021/jp803921k
[19] Kar, T., Cuma, M. and Scheiner, S. (1998) Structure, Stability, and Bonding of BC2N: An ab Initio Study. The Journal of Physical Chemistry A, 102, 10134-10141.
https://doi.org/10.1021/jp982424+
[20] Taniyasu, Y. and Kasu, M. (2008) Aluminum Nitride Deep-Ultraviolet Light-Emitting p-n Junction Diodes. Diamond and Related Materials, 17, 1273-1277.
https://doi.org/10.1016/j.diamond.2008.02.042
[21] Niu, M., Yu, G.T., Yang, G.H., et al. (2014) Doping the Alkali Atom: An Effective Strategy to Improve the Electronic and Nonlinear Optical Properties of the Inorganic Al12N12 Nanocage. Inorganic Chemistry, 53, 349-358.
https://doi.org/10.1021/ic4022917
[22] Shakerzadeh, E., Barazesh, N. and Talebi, S.Z. (2014) A Comparative Theoretical Study on the Structural, Electronic and Nonlinear Optical Features of B12N12 and Al12N12 Nanoclusters with the Groups III, IV and V Dopants. Superlattices and Microstructures, 76, 264-276.
https://doi.org/10.1016/j.spmi.2014.09.037
[23] Yang, H. and Chen, H. (2016) The Stabilities and Electronic Structures of AlnSi12−nN12 (n=0, 1, 2 and 4). Journal of Materials Research, 31, 241-249.
https://doi.org/10.1557/jmr.2015.390
[24] Yang, H., Song, Y., Zhang, Y. and Chen, H. (2018) Prediction of the Electron Redundant SinNn Fullerenes. Physica E: Low-Dimensional Systems and Nanostructures, 99, 208-214.
https://doi.org/10.1016/j.physe.2018.02.010