|
[1]
|
Wang, C., Horby, P.W., Hayden, F.G. and Gao, G.F. (2020) A Novel Coronavirus Outbreak of Global Health Concern. Lancet, 395, 470-473.
|
|
[2]
|
Chen, F., Dai, Z., Huang, C., Chen, H., Wang, X. and Li, X. (2021) Gastrointestinal Disease and COVID-19: A Review of Current Evidence. Digestive Diseases, 40, 506-514. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Holshue, M.L., DeBolt, C., Lindquist, S., et al. (2020) First Case of 2019 Novel Coronavirus in the United States. The New England Journal of Medicine, 382, 929-936.
|
|
[4]
|
Zhao, Y.C.Y., Wang, S.C.K. and Xu, K. (2020) COVID-19 and Gastrointestinal Symptoms. British Journal of Surgery, 107, e382-e383.
|
|
[5]
|
De Nardi, P., Parolini, D.C., Ripa, M., Racca, S. and Rosati, R. (2020) Bowel Perforation in a Covid-19 Patient: Case Report. International Journal of Colorectal Disease, 35, 1797-1800. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pérez Roldán, F., Malik Javed, Z., Yagüe Compadre, J.L., Navarro López, M.d.C., Rodríguez Bobada-Caraballo, D., Fernández Visier, I., et al. (2021) Gastric Ulcers with Upper Gastrointestinal Bleeding in Patients with Severe Sars-cov-2. Revista Española de Enfermedades Digestivas, 113, 122-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ferm, S., Fisher, C., Pakala, T., et al. (2020) Analysis of Gastrointestinal and Hepatic Manifestations of SARS-CoV-2 Infection in 892 Patients in Queens, NY. Clinical Gastroenterology and Hepatology, 18, 2378-2379.e1.
|
|
[8]
|
Mao, R., Qiu, Y., He, J., Tan, J., Li, X., Liang, J., et al. (2020) Manifestations and Prognosis of Gastrointestinal and Liver Involvement in Patients with COVID-19: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 5, 667-678. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhang, M.M., Chen, L.N. and Qian, J.M. (2021) Gastrointestinal Manifestations and Possible Mechanisms of COVID-19 in Different Periods. Journal of Digestive Diseases, 22, 683-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Khalil, M.M., Gain, G., Mahbub-Uz-Zaman, K., et al. (2020) Gastrointestinal Manifestations among COVID-19 Patients in Bangladesh: A Cross Sectional Study. Mymensingh Medical Journal, 29, 956-963.
|
|
[11]
|
Muñoz-Durango, N., Fuentes, C., Castillo, A., González-Gómez, L., Vecchiola, A., Fardella, C., et al. (2016) Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension. International Journal of Molecular Sciences, 17, Article 797. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Voors, A.A., Pinto, Y.M., Buikema, H., Urata, H., Oosterga, M., Rooks, G., et al. (1998) Dual Pathway for Angiotensin II Formation in Human Internal Mammary Arteries. British Journal of Pharmacology, 125, 1028-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Meng, Y., Yu, C., Li, W., Li, T., Luo, W., Huang, S., et al. (2014) Angiotensin-Converting Enzyme 2/Angiotensin-(1-7)/Mas Axis Protects against Lung Fibrosis by Inhibiting the Mapk/nf-Κb Pathway. American Journal of Respiratory Cell and Molecular Biology, 50, 723-736. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, H., Shao, B., Dang, Q., et al. (2021) Pathogenesis and Mechanism of Gastrointestinal Infection with COVID-19. Frontiers in Immunology, 12, Article 674074.
|
|
[15]
|
Hoffmann, M., Kleine-Weber, H., Schroeder, S., et al. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271-280.e8.
|
|
[16]
|
Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., et al. (2005) Angiotensin-Converting Enzyme 2 Protects from Severe Acute Lung Failure. Nature, 436, 112-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., et al. (2012) ACE2 Links Amino Acid Malnutrition to Microbial Ecology and Intestinal Inflammation. Nature, 487, 477-481. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C., Abiona, O., et al. (2020) Cryo-EM Structure of the 2019-Ncov Spike in the Prefusion Conformation. Science, 367, 1260-1263. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Giron, L.B., Dweep, H., Yin, X., et al. (2021) Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Frontiers in Immunology, 12, Article 686240.
|
|
[20]
|
Saia, R.S., Giusti, H., Luis-Silva, F., et al. (2021) Clinical Investigation of Intestinal Fatty Acid-Binding Protein (I-FABP) as a Biomarker of SARS-CoV-2 Infection. International Journal of Infectious Disease, 113, 82-86.
|
|
[21]
|
Pelsers, M.M., Namiot, Z., Kisielewski, W., et al. (2003) Intestinal-Type and Liver-Type Fatty Acid-Binding Protein in the Intestine. Tissue Distribution and Clinical Utility. Clinical Biochemistry, 36, 529-535.
|
|
[22]
|
Zhou, P., Yang, X., Wang, X., Hu, B., Zhang, L., Zhang, W., et al. (2020) A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature, 579, 270-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wan, Y., Shang, J., Graham, R., et al. (2020) Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology, 94, e00127-e00120.
|
|
[24]
|
Chen, L., Li, L., Han, Y., Lv, B., Zou, S. and Yu, Q. (2020) Tong-fu-li-fei Decoction Exerts a Protective Effect on Intestinal Barrier of Sepsis in Rats through Upregulating Zo-1/Occludin/Claudin-1 Expression. Journal of Pharmacological Sciences, 143, 89-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Fernandez-Blanco, J.A., Estevez, J., Shea-Donohue, T., Martinez, V. and Vergara, P. (2015) Changes in Epithelial Barrier Function in Response to Parasitic Infection: Implications for IBD Pathogenesis. Journal of Crohn’s and Colitis, 9, 463-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lehmann, M., Allers, K., Heldt, C., Meinhardt, J., Schmidt, F., Rodriguez-Sillke, Y., et al. (2021) Human Small Intestinal Infection by Sars-Cov-2 Is Characterized by a Mucosal Infiltration with Activated CD8+ T Cells. Mucosal Immunology, 14, 1381-1392. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Assimakopoulos, S.F. (2011) Enterocytes’ Tight Junctions: From Molecules to Diseases. World Journal of Gastrointestinal Pathophysiology, 2, 123-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sun, Z., Song, Z., Liu, C., Tan, S., Lin, S., Zhu, J., et al. (2022) Gut Microbiome Alterations and Gut Barrier Dysfunction Are Associated with Host Immune Homeostasis in COVID-19 Patients. BMC Medicine, 20, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Assimakopoulos, S.F., Mastronikolis, S., DE Lastic, A., Aretha, D., Papageorgiou, D., Chalkidi, T., et al. (2021) Intestinal Barrier Biomarker ZO1 and Endotoxin Are Increased in Blood of Patients with Covid-19-Associated Pneumonia. In Vivo, 35, 2483-2488. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Guo, J., Zhu, Y., Ma, X., Shang, G., Liu, B. and Zhang, K. (2023) Virus Infection and Mrna Nuclear Export. International Journal of Molecular Sciences, 24, Article 12593. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chang, F., Chen, H., Chen, P., Ho, M., Hsieh, S., Lin, J., et al. (2020) Immunologic Aspects of Characteristics, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). Journal of Biomedical Science, 27, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
He, L., Ding, Y., Zhang, Q., Che, X., He, Y., Shen, H., et al. (2006) Expression of Elevated Levels of Pro-inflammatory Cytokines in SARs-CoV-Infected Ace2+ Cells in SARS Patients: Relation to the Acute Lung Injury and Pathogenesis of SARS. The Journal of Pathology, 210, 288-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Versteeg, G.A. and García-Sastre, A. (2010) Viral Tricks to Grid-Lock the Type I Interferon System. Current Opinion in Microbiology, 13, 508-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zheng, Y., Zhuang, M., Han, L., Zhang, J., Nan, M., Zhan, P., et al. (2020) Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) Membrane (M) Protein Inhibits Type I and III Interferon Production by Targeting RIG-I/MDA-5 Signaling. Signal Transduction and Targeted Therapy, 5, Article No. 299. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Han, L., Zhuang, M., Deng, J., Zheng, Y., Zhang, J., Nan, M., et al. (2021) SARs-CoV-2 Orf9b Antagonizes Type I and III Interferons by Targeting Multiple Components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING Signaling Pathways. Journal of Medical Virology, 93, 5376-5389. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Jiang, H., Zhang, H., Meng, Q., Xie, J., Li, Y., Chen, H., et al. (2020) SARs-CoV-2 Orf9b Suppresses Type I Interferon Responses by Targeting Tom70. Cellular & Molecular Immunology, 17, 998-1000. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kreimendahl, S. and Rassow, J. (2020) The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. International Journal of Molecular Sciences, 21, Article 7262. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chu, H., Chan, J.F., Wang, Y., Yuen, T.T., Chai, Y., Shuai, H., et al. (2021) SARs-CoV-2 Induces a More Robust Innate Immune Response and Replicates Less Efficiently than SARs-CoV in the Human Intestines: An ex Vivo Study with Implications on Pathogenesis of Covid-19. Cellular and Molecular Gastroenterology and Hepatology, 11, 771-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lamers, M.M., Beumer, J., van der Vaart, J., Knoops, K., Puschhof, J., Breugem, T.I., et al. (2020) SARs-CoV-2 Productively Infects Human Gut Enterocytes. Science, 369, 50-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yang, Y., Xiong, Z., Zhang, S., et al. (2005) Bcl-xl Inhibits T-Cell Apoptosis Induced by Expression of SARS Coronavirus E Protein in the Absence of Growth Factors. Biochemical Journal, 392, 135-143.
|
|
[41]
|
Conti, P., Caraffa, A., Gallenga, C.E., et al. (2020) Coronavirus-19 (SARS-CoV-2) Induces Acute Severe Lung Inflammation via IL-1 Causing Cytokine Storm in COVID-19: A Promising Inhibitory Strategy. Journal of Biological Regulators and Homeostatic Agents, 34, 1971-1975.
|
|
[42]
|
Baindara, P., Chakraborty, R., Holliday, Z.M., et al. (2021) Oral Probiotics in Coronavirus Disease 2019: Connecting the Gut-Lung Axis to Viral Pathogenesis, Inflammation, Secondary Infection and Clinical Trials. New Microbes and New Infections, 40, Article ID: 100837.
|
|
[43]
|
Jin, X., Lian, J., Hu, J., Gao, J., Zheng, L., Zhang, Y., et al. (2020) Epidemiological, Clinical and Virological Characteristics of 74 Cases of Coronavirus-Infected Disease 2019 (COVID-19) with Gastrointestinal Symptoms. Gut, 69, 1002-1009. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Luo, S., Zhang, X. and Xu, H. (2020) Don’t Overlook Digestive Symptoms in Patients with 2019 Novel Coronavirus Disease (COVID-19). Clinical Gastroenterology and Hepatology, 18, 1636-1637. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wang, J., Li, F., Wei, H., Lian, Z., Sun, R. and Tian, Z. (2014) Respiratory Influenza Virus Infection Induces Intestinal Immune Injury via Microbiota-Mediated Th17 Cell-Dependent Inflammation. Journal of Experimental Medicine, 211, 2397-2410. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Papadakis, K.A., Prehn, J., Nelson, V., Cheng, L., Binder, S.W., Ponath, P.D., et al. (2000) The Role of Thymus-Expressed Chemokine and Its Receptor CCR9 on Lymphocytes in the Regional Specialization of the Mucosal Immune System. The Journal of Immunology, 165, 5069-5076. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Stenstad, H., Ericsson, A., Johansson-Lindbom, B., Svensson, M., Marsal, J., Mack, M., et al. (2006) Gut-Associated Lymphoid Tissue-Primed CD4+ T Cells Display Ccr9-Dependent and-Independent Homing to the Small Intestine. Blood, 107, 3447-3454. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Crowe, C.R., Chen, K., Pociask, D.A., Alcorn, J.F., Krivich, C., Enelow, R.I., et al. (2009) Critical Role of IL-17RA in Immunopathology of Influenza Infection. The Journal of Immunology, 183, 5301-5310. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533.
|
|
[51]
|
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., et al. (2017) Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. European Journal of Nutrition, 57, 1-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Gautier, T., David-Le Gall, S., Sweidan, A., Tamanai-Shacoori, Z., Jolivet-Gougeon, A., Loréal, O., et al. (2021) Next-Generation Probiotics and Their Metabolites in Covid-19. Microorganisms, 9, Article 941. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hong, B.S. and Kim, M. (2021) Interplays between Human Microbiota and Micrornas in COVID-19 Pathogenesis: A Literature Review. Physical Activity and Nutrition, 25, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Van Der Lelie, D. and Taghavi, S. (2020) COVID-19 and the Gut Microbiome: More than a Gut Feeling. mSystems, 5, e00453-20.
|
|
[55]
|
Deriu, E., Boxx, G.M., He, X., et al. (2016) Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons. PLOS Pathogens, 12, e1005572.
|
|
[56]
|
Zuo, T., Zhang, F., Lui, G., et al. (2020) Alterations in Gut Microbiota of Patients with COVID-19 during Time of Hospitalization. Gastroenterology, 159, 944-955.e8.
|
|
[57]
|
Villapol, S. (2020) Gastrointestinal Symptoms Associated with COVID-19: Impact on the Gut Microbiome. Translational Research, 226, 57-69.
|
|
[58]
|
Yang, J., Zhao, X., Patel, A., Potru, R., Azizi-Ghannad, S., Dolinger, M., et al. (2015) Rapamycin Inhibition of Mtor Reduces Levels of the Na+/H+ Exchanger 3 in Intestines of Mice and Humans, Leading to Diarrhea. Gastroenterology, 149, 151-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Dean, M.J., Ochoa, J.B., Sanchez-Pino, M.D., et al. (2021) Severe COVID-19 Is Characterized by an Impaired Type I Interferon Response and Elevated Levels of Arginase Producing Granulocytic Myeloid Derived Suppressor Cells. Frontiers in Immunology, 12, Article 695972.
|
|
[60]
|
Ye, Q., Wang, B., Zhang, T., et al. (2020) The Mechanism and Treatment of Gastrointestinal Symptoms in Patients with COVID-19. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 319, G245-G252.
|
|
[61]
|
Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., et al. (2017) Bifidobacteria and Their Health-Promoting Effects. Microbiology Spectrum, 5, 3.
|
|
[62]
|
Kawahara, T., Takahashi, T., Oishi, K., Tanaka, H., Masuda, M., Takahashi, S., et al. (2015) Consecutive Oral Administration of bifidobacterium Longum MM-2 Improves the Defense System against Influenza Virus Infection by Enhancing Natural Killer Cell Activity in a Murine Model. Microbiology and Immunology, 59, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Mahooti, M., Abdolalipour, E., Salehzadeh, A., Mohebbi, S.R., Gorji, A. and Ghaemi, A. (2019) Immunomodulatory and Prophylactic Effects of Bifidobacterium Bifidum Probiotic Strain on Influenza Infection in Mice. World Journal of Microbiology and Biotechnology, 35, Article No. 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Yao, S., Zhao, Z., Wang, W., et al. (2021) Bifidobacterium Longum: Protection against Inflammatory Bowel Disease. Journal of Immunology Research, 2021, Article ID: 8030297.
|
|
[65]
|
Gopal, P.K., Prasad, J., Smart, J. and Gill, H.S. (2001) In Vitro Adherence Properties of Lactobacillus Rhamnosus DR20 and Bifidobacterium Lactis DR10 Strains and Their Antagonistic Activity against an Enterotoxigenic Escherichia Coli. International Journal of Food Microbiology, 67, 207-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Wang, Z., Xiao, G., Yao, Y., Guo, S., Lu, K. and Sheng, Z. (2006) The Role of Bifidobacteria in Gut Barrier Function after Thermal Injury in Rats. The Journal of Trauma: Injury, Infection, and Critical Care, 61, 650-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Wells, J.M. (2011) Immunomodulatory Mechanisms of Lactobacilli. Microbial Cell Factories, 10, S17.
|
|
[68]
|
Wang, Y., Moon, A., Huang, J., et al. (2022) Antiviral Effects and Underlying Mechanisms of Probiotics as Promising Antivirals. Frontiers in Cellular and Infection Microbiology, 12, Article 928050.
|
|
[69]
|
Taufer, C.R. and Rampelotto, P.H. (2024) Lactobacilli in COVID-19: A Systematic Review Based on Next-Generation Sequencing Studies. Microorganisms, 12, Article 284. [Google Scholar] [CrossRef] [PubMed]
|