[1]
|
Motzer, R.J., Rane, P.P., Saretsky, T.L., Pawar, D., Martin Nguyen, A., Sundaram, M., et al. (2023) Patient-Reported Outcome Measurement and Reporting for Patients with Advanced Renal Cell Carcinoma: A Systematic Literature Review. European Urology, 84, 406-417. https://doi.org/10.1016/j.eururo.2023.07.006
|
[2]
|
Sánchez-Gastaldo, A., Kempf, E., González del Alba, A., et al. (2017) Systemic Treatment of Renal Cell Cancer: A Comprehensive Review. Cancer Treatment Reviews, 60, 77-89. https://doi.org/10.1016/j.ctrv.2017.08.010
|
[3]
|
Tay, C., Tanaka, A. and Sakaguchi, S. (2023) Tumor-Infiltrating Regulatory T Cells as Targets of Cancer Immunotherapy. Cancer Cell, 41, 450-465. https://doi.org/10.1016/j.ccell.2023.02.014
|
[4]
|
Cosman, D., Fanger, N., Borges, L., Kubin, M., Chin, W., Peterson, L., et al. (1997) A Novel Immunoglobulin Superfamily Receptor for Cellular and Viral MHC Class I Molecules. Immunity, 7, 273-282. https://doi.org/10.1016/s1074-7613(00)80529-4
|
[5]
|
Colonna, M., Samaridis, J., Cella, M., Angman, L., Allen, R.L., O’Callaghan, C.A., et al. (1998) Cutting Edge: Human Myelomonocytic Cells Express an Inhibitory Receptor for Classical and Nonclassical MHC Class I Molecules. The Journal of Immunology, 160, 3096-3100. https://doi.org/10.4049/jimmunol.160.7.3096
|
[6]
|
Hirayasu, K. and Arase, H. (2018) Leukocyte Immunoglobulin-Like Receptor (LILR). In: Choi, S., Ed., Encyclopedia of Signaling Molecules, Springer International Publishing, 2854-2861. https://doi.org/10.1007/978-3-319-67199-4_101689
|
[7]
|
Zhuang, Q., Liu, Y., Wang, H., et al. (2023) LILRB3 Suppresses Immunity in Glioma and Is Associated with Poor Prognosis. Clinical and Translational Medicine, 13, e1396. https://doi.org/10.1002/ctm2.1396
|
[8]
|
Shi, W., Zhang, F., Chen, X., Wang, S., Zhang, H., Yang, Z., et al. (2022) Tumor-Derived Immunoglobulin Like Transcript 5 Induces Suppressive Immunocyte Infiltration in Colorectal Cancer. Cancer Science, 113, 1939-1954. https://doi.org/10.1111/cas.15360
|
[9]
|
Wu, G., Xu, Y., Schultz, R.D., Chen, H., Xie, J., Deng, M., et al. (2021) LILRB3 Supports Acute Myeloid Leukemia Development and Regulates T-Cell Antitumor Immune Responses through the TRAF2-cFLIP-Nf-κB Signaling Axis. Nature Cancer, 2, 1170-1184. https://doi.org/10.1038/s43018-021-00262-0
|
[10]
|
Storm, L., Bruijnesteijn, J., De Groot, N.G., et al. (2021) The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health and Disease. Frontiers in Immunology, 12, Article 716289. https://doi.org/10.3389/fimmu.2021.716289
|
[11]
|
Sambrook, J.G., Bashirova, A., Andersen, H., et al. (2006) Identification of the Ancestral Killer Immunoglobulin-Like Receptor Gene in Primates. BMC Genomics, 7, Article No. 209. https://doi.org/10.1186/1471-2164-7-209
|
[12]
|
Bashirova, A.A., Apps, R., Vince, N., Mochalova, Y., Yu, X.G. and Carrington, M. (2013) Diversity of the Human LILRB3/A6 Locus Encoding a Myeloid Inhibitory and Activating Receptor Pair. Immunogenetics, 66, 1-8. https://doi.org/10.1007/s00251-013-0730-9
|
[13]
|
Pfistershammer, K., Lawitschka, A., Klauser, C., Leitner, J., Weigl, R., Heemskerk, M.H.M., et al. (2009) Allogeneic Disparities in Immunoglobulin-Like Transcript 5 Induce Potent Antibody Responses in Hematopoietic Stem Cell Transplant Recipients. Blood, 114, 2323-2332. https://doi.org/10.1182/blood-2008-10-183814
|
[14]
|
Hirayasu, K., Sun, J., Hasegawa, G., et al. (2021) Characterization of LILRB3 and LILRA6 Allelic Variants in the Japanese Population. Journal of Human Genetics, 66, 739-748. https://doi.org/10.1038/s10038-021-00906-0
|
[15]
|
Bashirova, A.A., Kasprzak, W., O’hUigin, C. and Carrington, M. (2022) Distinct Frequency Patterns of LILRB3 and LILRA6 Allelic Variants in Europeans. Immunogenetics, 75, 263-267. https://doi.org/10.1007/s00251-022-01286-1
|
[16]
|
Anderson, K.J. and Allen, R.L. (2009) Regulation of T-Cell Immunity by Leucocyte Immunoglobulin-Like Receptors: Innate Immune Receptors for Self on Antigen-Presenting Cells. Immunology, 127, 8-17. https://doi.org/10.1111/j.1365-2567.2009.03097.x
|
[17]
|
Zhou, J., Wang, Y., Huang, G., Yang, M., Zhu, Y., Jin, C., et al. (2023) LilrB3 Is a Putative Cell Surface Receptor of APOE4. Cell Research, 33, 116-130. https://doi.org/10.1038/s41422-022-00759-y
|
[18]
|
Redondo-García, S., Barritt, C., Papagregoriou, C., et al. (2023) Human Leukocyte Immunoglobulin-Like Receptors in Health and Disease. Frontiers in Immunology, 14, Article 1282874. https://doi.org/10.3389/fimmu.2023.1282874
|
[19]
|
Jones, D.C., Hewitt, C.R.A., López-Álvarez, M.R., Jahnke, M., Russell, A.I., Radjabova, V., et al. (2016) Allele-Specific Recognition by LILRB3 and LILRA6 of a Cytokeratin 8-Associated Ligand on Necrotic Glandular Epithelial Cells. Oncotarget, 7, 15618-15631. https://doi.org/10.18632/oncotarget.6905
|
[20]
|
van der Touw, W., Kang, K., Luan, Y., Ma, G., Mai, S., Qin, L., et al. (2018) Glatiramer Acetate Enhances Myeloid-Derived Suppressor Cell Function via Recognition of Paired Ig-Like Receptor B. The Journal of Immunology, 201, 1727-1734. https://doi.org/10.4049/jimmunol.1701450
|
[21]
|
Lasry, A. and Aifantis, I. (2021) LILRB3 as a Regulator of AML Survival. Nature Cancer, 2, 1122-1123. https://doi.org/10.1038/s43018-021-00285-7
|
[22]
|
Hirayasu, K. and Arase, H. (2015) Functional and Genetic Diversity of Leukocyte Immunoglobulin-Like Receptor and Implication for Disease Associations. Journal of Human Genetics, 60, 703-708. https://doi.org/10.1038/jhg.2015.64
|
[23]
|
An, H., Chandra, V., Piraino, B., Borges, L., Geczy, C., Mcneil, H.P., et al. (2010) Soluble LILRA3, a Potential Natural Antiinflammatory Protein, Is Increased in Patients with Rheumatoid Arthritis and Is Tightly Regulated by Interleukin 10, Tumor Necrosis Factor-α, and Interferon-γ. The Journal of Rheumatology, 37, 1596-1606. https://doi.org/10.3899/jrheum.091119
|
[24]
|
Lebbink, R.J., van den Berg, M.C.W., de Ruiter, T., Raynal, N., van Roon, J.A.G., Lenting, P.J., et al. (2008) The Soluble Leukocyte-Associated Ig-Like Receptor (LAIR)-2 Antagonizes the Collagen/LAIR-1 Inhibitory Immune Interaction. The Journal of Immunology, 180, 1662-1669. https://doi.org/10.4049/jimmunol.180.3.1662
|
[25]
|
Deng, M., Chen, H., Liu, X., Huang, R., He, Y., Yoo, B., et al. (2021) Leukocyte Immunoglobulin-Like Receptor Subfamily B: Therapeutic Targets in Cancer. Antibody Therapeutics, 4, 16-33. https://doi.org/10.1093/abt/tbab002
|
[26]
|
Takeda, K. and Nakamura, A. (2017) Regulation of Immune and Neural Function via Leukocyte Ig-Like Receptors. The Journal of Biochemistry, 162, 73-80. https://doi.org/10.1093/jb/mvx036
|
[27]
|
Kim, T., Vidal, G.S., Djurisic, M., William, C.M., Birnbaum, M.E., Garcia, K.C., et al. (2013) Human LilrB2 Is a β-Amyloid Receptor and Its Murine Homolog PirB Regulates Synaptic Plasticity in an Alzheimer’s Model. Science, 341, 1399-1404. https://doi.org/10.1126/science.1242077
|
[28]
|
Karo-Atar, D., Moshkovits, I., Eickelberg, O., Königshoff, M. and Munitz, A. (2013) Paired Immunoglobulin-Like Receptor-B Inhibits Pulmonary Fibrosis by Suppressing Profibrogenic Properties of Alveolar Macrophages. American Journal of Respiratory Cell and Molecular Biology, 48, 456-464. https://doi.org/10.1165/rcmb.2012-0329oc
|
[29]
|
Cheng, H., Mohammed, F., Nam, G., Chen, Y., Qi, J., Garner, L.I., et al. (2011) Crystal Structure of Leukocyte Ig-Like Receptor LILRB4 (ILT3/LIR-5/CD85k). Journal of Biological Chemistry, 286, 18013-18025. https://doi.org/10.1074/jbc.m111.221028
|
[30]
|
Ayukawa, S., Kamoshita, N., Nakayama, J., Teramoto, R., Pishesha, N., Ohba, K., et al. (2021) Epithelial Cells Remove Precancerous Cells by Cell Competition via MHC Class I-LILRB3 Interaction. Nature Immunology, 22, 1391-1402. https://doi.org/10.1038/s41590-021-01045-6
|
[31]
|
Wong, C.C. and Yu, J. (2022) MHC Class I-LILRB3 Delivers a Punch to Eliminate Precancerous Cells. Cellular & Molecular Immunology, 19, 655-656. https://doi.org/10.1038/s41423-021-00821-6
|
[32]
|
Zheng, J., Umikawa, M., Cui, C., Li, J., Chen, X., Zhang, C., et al. (2012) Inhibitory Receptors Bind ANGPTLs and Support Blood Stem Cells and Leukaemia Development. Nature, 485, 656-660. https://doi.org/10.1038/nature11095
|
[33]
|
Cabia, B., Andrade, S., Carreira, M.C., Casanueva, F.F. and Crujeiras, A.B. (2016) A Role for Novel Adipose Tissue-Secreted Factors in Obesity-Related Carcinogenesis. Obesity Reviews, 17, 361-376. https://doi.org/10.1111/obr.12377
|
[34]
|
Thorin-Trescases, N., Labbé, P., Mury, P., Lambert, M. and Thorin, E. (2021) Angptl2 Is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence. International Journal of Molecular Sciences, 22, Article 12232. https://doi.org/10.3390/ijms222212232
|
[35]
|
Blumenfeld, J., Yip, O., Kim, M.J. and Huang, Y. (2024) Cell Type-Specific Roles of APOE4 in Alzheimer Disease. Nature Reviews Neuroscience, 25, 91-110. https://doi.org/10.1038/s41583-023-00776-9
|
[36]
|
Huang, R., Liu, X., Kim, J., Deng, H., Deng, M., Gui, X., et al. (2023) LILRB3 Supports Immunosuppressive Activity of Myeloid Cells and Tumor Development. Cancer Immunology Research, 12, 350-362. https://doi.org/10.1158/2326-6066.cir-23-0496
|
[37]
|
Hofer, J., Forster, F., Isenman, D.E., Wahrmann, M., Leitner, J., Hölzl, M.A., et al. (2015) Ig-Like Transcript 4 as a Cellular Receptor for Soluble Complement Fragment C4d. The FASEB Journal, 30, 1492-1503. https://doi.org/10.1096/fj.15-275594
|
[38]
|
Nakayama, M., Underhill, D.M., Petersen, T.W., Li, B., Kitamura, T., Takai, T., et al. (2007) Paired Ig-Like Receptors Bind to Bacteria and Shape TLR-Mediated Cytokine Production. The Journal of Immunology, 178, 4250-4259. https://doi.org/10.4049/jimmunol.178.7.4250
|
[39]
|
van Rees, D.J., Szilagyi, K., Kuijpers, T.W., Matlung, H.L. and van den Berg, T.K. (2016) Immunoreceptors on Neutrophils. Seminars in Immunology, 28, 94-108. https://doi.org/10.1016/j.smim.2016.02.004
|
[40]
|
Kuroki, K., Furukawa, A. and Maenaka, K. (2012) Molecular Recognition of Paired Receptors in the Immune System. Frontiers in Microbiology, 3, Article 429. https://doi.org/10.3389/fmicb.2012.00429
|
[41]
|
Favier, B. (2016) Regulation of Neutrophil Functions through Inhibitory Receptors: An Emerging Paradigm in Health and Disease. Immunological Reviews, 273, 140-155. https://doi.org/10.1111/imr.12457
|
[42]
|
Lewis Marffy, A.L. and McCarthy, A.J. (2020) Leukocyte Immunoglobulin-Like Receptors (LILRs) on Human Neutrophils: Modulators of Infection and Immunity. Frontiers in Immunology, 11, Article 857.
|
[43]
|
Zhao, Y., van Woudenbergh, E., Zhu, J., Heck, A.J.R., van Kessel, K.P.M., de Haas, C.J.C., et al. (2020) The Orphan Immune Receptor LILRB3 Modulates Fc Receptor-Mediated Functions of Neutrophils. The Journal of Immunology, 204, 954-966. https://doi.org/10.4049/jimmunol.1900852
|
[44]
|
Sloane, D.E., Tedla, N., Awoniyi, M., MacGlashan, D.W., Borges, L., Austen, K.F., et al. (2004) Leukocyte Immunoglobulin-Like Receptors: Novel Innate Receptors for Human Basophil Activation and Inhibition. Blood, 104, 2832-2839. https://doi.org/10.1182/blood-2004-01-0268
|
[45]
|
Uehara, T., Bléry, M., Kang, D., Chen, C., Ho, L.H., Gartland, G.L., et al. (2001) Inhibition of Ige-Mediated Mast Cell Activation by the Paired Ig-Like Receptor PIR-b. Journal of Clinical Investigation, 108, 1041-1050. https://doi.org/10.1172/jci200112195
|
[46]
|
Yeboah, M., Papagregoriou, C., Jones, D.C., et al. (2020) LILRB3 (ILT5) Is a Myeloid Cell Checkpoint that Elicits Profound Immunomodulation. JCI Insight, 5, e141593. https://doi.org/10.1172/jci.insight.141593
|
[47]
|
He, L., Jhong, J.-H., Chen, Q., Huang, K.-Y., Strittmatter, K., Kreuzer, J., et al. (2021) Global Characterization of Macrophage Polarization Mechanisms and Identification of M2-Type Polarization Inhibitors. Cell Reports, 37, Article 109955. https://doi.org/10.1016/j.celrep.2021.109955
|
[48]
|
戈文珂, 吴卫兵. 肿瘤微环境中肿瘤相关巨噬细胞极化的影响因素及其意义[J]. 中国肺癌杂志, 2023, 26(3): 228-237.
|
[49]
|
Ogawa, K., Funaba, M., Chen, Y. and Tsujimoto, M. (2006) Activin a Functions as a Th2 Cytokine in the Promotion of the Alternative Activation of Macrophages. The Journal of Immunology, 177, 6787-6794. https://doi.org/10.4049/jimmunol.177.10.6787
|
[50]
|
Picarda, E., Ohaegbulam, K.C. and Zang, X. (2016) Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clinical Cancer Research, 22, 3425-3431. https://doi.org/10.1158/1078-0432.ccr-15-2428
|
[51]
|
Vlaicu, P., Mertins, P., Mayr, T., et al. (2013) Monocytes/Macrophages Support Mammary Tumor Invasivity by Co-Secreting Lineage-Specific EGFR Ligands and a STAT3 Activator. BMC Cancer, 13, Article No. 197. https://doi.org/10.1186/1471-2407-13-197
|
[52]
|
Ma, G., Pan, P.-Y., Eisenstein, S., Divino, C.M., Lowell, C.A., Takai, T., et al. (2011) Paired Immunoglobin-Like Receptor-B Regulates the Suppressive Function and Fate of Myeloid-Derived Suppressor Cells. Immunity, 34, 385-395. https://doi.org/10.1016/j.immuni.2011.02.004
|
[53]
|
Liu, H. (2021) Emerging Agents and Regimens for AML. Journal of Hematology & Oncology, 14, Article No. 49. https://doi.org/10.1186/s13045-021-01062-w
|
[54]
|
Mai, S., Hodges, A., Chen, H., Zhang, J., Wang, Y., Liu, Y., et al. (2023) LILRB3 Modulates Acute Myeloid Leukemia Progression and Acts as an Effective Target for CAR T-Cell Therapy. Cancer Research, 83, 4047-4062. https://doi.org/10.1158/0008-5472.can-22-2483
|
[55]
|
Chen, Y., Gao, D.-Y. and Huang, L. (2015) In vivo Delivery of miRNAs for Cancer Therapy: Challenges and Strategies. Advanced Drug Delivery Reviews, 81, 128-141. https://doi.org/10.1016/j.addr.2014.05.009
|
[56]
|
Cen, Q., Chen, J., Guo, J., et al. (2024) CLPs-miR-103a-2-5p Inhibits Proliferation and Promotes Cell Apoptosis in AML Cells by Targeting LILRB3 and Nrf2/HO-1 Axis, Regulating CD8+ T Cell Response. Journal of Translational Medicine, 22, Article 278. https://doi.org/10.1186/s12967-024-05070-5
|
[57]
|
Dekker, E., Tanis, P.J., Vleugels, J.L.A., Kasi, P.M. and Wallace, M.B. (2019) Colorectal Cancer. The Lancet, 394, 1467-1480. https://doi.org/10.1016/s0140-6736(19)32319-0
|
[58]
|
Xu, S., Tang, L., Li, X., et al. (2020) Immunotherapy for Glioma: Current Management and Future Application. Cancer Letters, 476, 1-12. https://doi.org/10.1016/j.canlet.2020.02.002
|
[59]
|
Hara, T., Chanoch-Myers, R., Mathewson, N.D., et al. (2021) Interactions between Cancer Cells and Immune Cells Drive Transitions to Mesenchymal-Like States in Glioblastoma. Cancer Cell, 39, 779-792. https://doi.org/10.1016/j.ccell.2021.05.002
|