白细胞免疫球蛋白样受体B3 (LILRB3)的免疫学功能及人类恶性肿瘤相关性研究
Investigations into the Immunological Functions of LILRB3 and Its Association with Human Malignancies
DOI: 10.12677/acm.2024.1461852, PDF, HTML, XML,   
作者: 丛子翔, 牛志宏*:山东大学齐鲁医学院,山东 济南;山东省立医院泌尿外科,山东 济南
关键词: LILRB3恶性肿瘤免疫抑制靶向治疗LILRB3 Malignant Tumors Immunosuppression Targeted Therapy
摘要: 目前,恶性肿瘤仍是全球范围内人类疾病死亡的主要原因之一。越来越多的研究揭示,恶性肿瘤的发生进展与基因表达密切相关。因此,通过转录组学研究寻找恶性肿瘤相关的生物标志物已成为癌症研究的热门领域。白细胞免疫球蛋白样受体B家族成员3 (Leukocyte immunoglobulin-like receptor subfamily B member 3, LILRB3)是LILR家族的一员,在免疫细胞中广泛表达,主要抑制免疫反应并介导耐受。LILRB3的异常表达与一系列病理学过程相关,包括感染和肿瘤进展过程中的免疫功能抑制,这表明LILRB3可能是免疫疗法的潜在候选靶点。本综述将概述这一广泛的免疫受体的免疫学功能和肿瘤相关性,总结了其在急性髓系白血病白血病、结直肠癌、神经胶质瘤等肿瘤中的研究进展,希望能够为靶向LILR治疗从癌症到自身免疫等多种疾病研究提供新的思路。
Abstract: Currently, malignant tumors remain one of the principal causes of mortality from human diseases globally. An increasing body of research has unveiled that the genesis and progression of malignant tumors are intimately associated with gene expression. Consequently, the quest for biomarkers related to malignant tumors through transcriptomic studies has emerged as a fervent area of cancer research. The Leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3), a constituent of the LILR family, is ubiquitously expressed in immune cells, primarily inhibiting immune responses and mediating tolerance. The aberrant expression of LILRB3 is linked with a spectrum of pathological processes, including the suppression of immune function during infections and tumor progression, suggesting LILRB3 as a potential target for immunotherapy. This review aims to encapsulate the immunological functions and tumor relevance of this expansive immune receptor, summarizing its research progress in malignancies such as acute myeloid leukemia, colorectal cancer, and glioma, in hopes of furnishing novel insights for targeted LILR therapy in a wide array of diseases ranging from cancer to autoimmunity.
文章引用:丛子翔, 牛志宏. 白细胞免疫球蛋白样受体B3 (LILRB3)的免疫学功能及人类恶性肿瘤相关性研究[J]. 临床医学进展, 2024, 14(6): 858-866. https://doi.org/10.12677/acm.2024.1461852

1. 引言

恶性肿瘤仍是全球范围内影响人口预期寿命的主要原因之一[1]。随着对恶性肿瘤分子生物学与基因组学的深入理解,新的治疗策略不断涌现,包括传统的手术治疗、放射治疗、化学治疗以及近年来迅猛发展的靶向治疗和免疫治疗等[2]。目前针对抑制性受体的免疫疗法,如针对程序性死亡蛋白-1 (Programmed death-1, PD-1)和细胞毒性T淋巴细胞相关蛋白-4 (Cytotoxic T-lymphocyte-associated protein 4, CTLA4)的免疫抑制剂已在多种肿瘤类型中显著改善了晚期患者的预后[3]。鉴于免疫检查点抑制剂在恶性肿瘤治疗中的重要地位,免疫抑制性受体最近成为人们关注的焦点。LILR家族作为免疫受体家族,在先天性和适应性免疫中扮演着重要的免疫调节角色,自1997年由Colonna等人与Cosman等人分别鉴定以来,已被发现广泛表达于包括单核细胞、巨噬细胞、NK细胞、T细胞和B细胞在内的多种免疫细胞上[4]-[6]。LILRB3 (又称ILT5、LIR-3、CD85a等)是LILR家族的免疫抑制性受体,作为肿瘤相关基因,LILRB3与白血病、肝细胞癌、结直肠癌等肿瘤的相关性已经被证实[7]-[9]。本文旨在探讨LILRB3在人体中的生物学功能及其在肿瘤进展中的作用,以期为揭示LILRB3参与肿瘤进展的潜在机制提供新思路,并为肿瘤免疫治疗开辟新途径。

2. LILRB3研究进展

2.1. LILRB3的分子结构

LILR家族蛋白是一组I型跨膜蛋白,发现于染色体区域19q13.4的基因簇中[10]。LILR区的长度约为497 kb,包括端粒区(约211 kb)和着丝粒区(约154 kb),由中心区(约132 kb)相隔[10]。LILRB3的分子结构主要由以下关键部分组成:四个C型免疫球蛋白样结构域(Ig-like domains)构成的胞质外区,一个跨膜结构域,以及四个免疫受体酪氨酸基抑制基序(Immunoreceptor tyrosine-based inhibitory motifs, ITIMs)组成的胞内区。免疫球蛋白样结构域主要负责识别及结合配体。当受体与配体结合后,ITIMs中的酪氨酸残基会被相应的蛋白酪氨酸激酶磷酸化,这一过程招募并激活含有SHP结构域的细胞内磷酸酶(SHP-1及SHP-2),从而催化并引发抑制性信号传导,进而调控免疫细胞的激活状态。

由于编码基因在染色体上紧密相连,LILRB3与LILRA6具有难以区分的胞外域,被认为互为激活对应物(Activating counterpart),且二者在结构上与其他LILR家族成员相差甚远[11]。同时,LILRB3的与LILRA6的结构显示出了广泛的多态性,这可能与二者间的非等位基因同源重组(Non-allelic homologous recombination, NAHR)有关[12]。LILRB3结构的高水平变异得到了造血干细胞移植患者数据的支持,由于供体和受体之间LILRB3存在序列差异,约5.4%接受移植的患者产生了LILRB3特异性抗体[13]。最近的研究分别针对日本与欧洲人群的测序结果对这一现象进行了深入探讨,证明了LILRB3的等位基因在不同人群中的分布频率不同,并基于DNA和蛋白质水平上的差异提出了新的谱系分型方法[14] [15]

2.2. LILRB3的表达概况

LILR是最初在髓细胞中发现的一组免疫调节受体家族。随着研究的进展,LILRB3被发现主要在髓系抗原呈递细胞(Antigen presenting cells, APC)上表达,如单核细胞、巨噬细胞和树突状细胞(Dendritic cells, DC),但也在嗜碱性粒细胞、嗜酸性粒细胞、B细胞、肥大细胞祖细胞和非免疫细胞,如破骨细胞与内皮细胞表达[16]-[19]。病理情况下,已经发现LILRB3在白血病和一些实体癌如肝细胞癌、结直肠癌与神经胶质瘤中高表达[7] [8] [20] [21]。除LILRA3仅以可溶性形式分泌外,LILR家族的其他成员主要以膜受体的形式参与细胞信号的传导[22]。但更深入的研究表明,LILRB3也可以可溶性配体的形式发挥功能[23] [24]

值得注意的是,包括LILRB3在内的LILR仅在灵长类动物中表达。配对免疫球蛋白样受体B (Paired immunoglobulin-like receptor B, PIR-B)被认为是LILRB3的小鼠直系同源物,PIR-B在序列和功能方面与人类LILRB3表现出强烈的相似性[25]。与LILRB3类似,PIR-B可通过寡聚β-淀粉样蛋白和髓鞘相关抑制因子的组合抑制神经细胞轴突的再生,导致中枢神经系统功能障碍[26] [27]。此外,PIR-B及LILRB3均可调节CD4+ IL17a+ T细胞的炎症反应,加重结肠炎表型[28]。因此,PIR-B可以在一定程度上用于在小鼠模型中探索LILRB3的功能。

2.3. LILRB3的潜在配体与功能

Willcox等人提出LILR家族可根据是否具有高度保守的主要组织相容性复合体(Major histocompatibility complex, MHC)结合残基分为两类。第1类LILR包含高度保守的MHC I类分子结合位点,在人类细胞中可与经典和非经典人类白细胞抗原(Human leukocyte antigen, HLA) I类分子或HLA I样蛋白相互作用,其成员包括LILRA1、LILRA2、LILRA3、LILRB1和LILRB2。第2类LILR家族成员包括LILRB3、LILRB4、LILRB5、LILRA4、LILRA5和LILRA6,其特点是其胞质外区残基的保守性较低,被认为与除外HLA I/β2-微球蛋白(β2-microglobulin, β2M)的配体相互作用[29]

LILRB3是LILRB家族研究最少的成员之一,在过去的一段时间内被视为“孤儿受体”(orphan receptor),然而近期的研究开始揭示LILRB3的潜在配体和功能。Ayukawa及其同事揭示了LILRB3-MHC I类分子轴在消除癌前细胞中的作用,这一现象是通过MHC I类分子的α3结构域和LILRB3的D1/D2结构域相互作用介导的。从机制上讲,通过MHC I类分子诱导的LILRB3酪氨酸磷酸化而发生,导致SHP2-ROCK2信号通路激活,最终通过细丝蛋白积累介导癌前细胞的顶端挤出(apical extrusion)效应,消除上皮层的癌前细胞减少肿瘤发生[30] [31]。Zheng J等人的一项试图鉴定血管生成素样蛋白(Angiopoietin-like proteins, ANGPTLs)潜在受体的研究证明,ANGPTL2和ANGPTL5可与LILRB3过表达的293T细胞结合[32]。ANGPTLs已被证明在炎症反应中扮演重要角色,包括调节炎症信号传导和影响免疫细胞浸润,在心血管疾病、肥胖、2型糖尿病和某些癌症中,ANGPTLs的表达水平与疾病进程和炎症状态有关,LILRB3可能通过与ANGPTLs的结合发挥炎症传感器的作用[33] [34]。在Jones D C等人的研究中,细胞角蛋白8 (cytokeratin 8)的敲低消除了LILRB3的等位基因变体LILRB3*12与上皮细胞的结合,表明LILRB3可识别来自坏死腺上皮细胞的配体,且该配体与细胞角蛋白8相关并位于细胞表面,然而细胞角蛋白8敲低细胞上配体的丢失可能是由于与细胞角蛋白本身直接结合的消除,或者间接归因于与细胞角蛋白8相关的蛋白质的丢失,将细胞角蛋白8鉴定为LILRB3的配体仍需进一步的研究加以证明[19]。载脂蛋白E4 (Apolipoprotein E4)与LILRB3在小胶质细胞的特异性相互作用最近被Shi Y团队证明。LILRB3的胞外区包含D1~D4四个串联结构域,两个APOE4分子的N端结构域可特异性地与两个LILRB3分子的D2/D4胞外结构域结合,形成异源四聚体复合物。既往的研究表明,APOE4参与促炎症反应,包括干扰素、细胞因子和抗病毒信号传导,并与阿尔兹海默症(Alzheimer’s disease, AD)进展有关,LILRB3可能作为中间环节参与其中[17] [35]。Huang R等人最新的研究证明了半乳糖凝集素(Galectins)对LILRBs的激活作用,其中半乳糖凝集素-4和半乳糖凝集素-7被发现可以激活LILRB3 [36]。补体成分(Complement system proteins, CSP)诸如C4d、C3d、C4b、C3b和iC3b是LILRB3等位基因变体ILT5v2的配体,表明LILRB3可能参与介导CSP对免疫细胞的抑制作用[37]。金黄色葡萄球菌(Staphylococcus aureus, S. aureus)上暴露的角蛋白相关蛋白与LILRB3的相互作用也已得到证明,但其介导的下游效应尚待进一步研究[38]

3. LILRB3的免疫学功能

3.1. LILRB3参与静息粒细胞的激活调控

中性粒细胞的激活阈值受到严格调控,以避免不恰当的免疫反应[39]。通过抑制性受体调节激活阈值是控制免疫细胞活性的重要机制[40] [41]。近期的研究发现,LILRB3在静息状态的中性粒细胞上高水平表达[42]。LILRB3在中性粒细胞静息和早期激活阶段通过抑制Fc受体介导的活性氧物质(Reactive oxygen species, ROS)产生、吞噬作用和微生物杀伤效应功能来抑制中性粒细胞的效应器功能。当中性粒细胞脱颗粒时,LILRB3以可溶性形式快速释放[43]。静息状态下嗜碱性粒细胞同时表达抑制性的LILRB3与活化的LILRA2,二者的共结合显著抑制了组胺、白三烯C4 (Leukotriene C4, LTC4)和白介素4 (Interleukin-4, IL-4)的释放[44]。与之相似,小鼠中LILRB3的同源分子PIR-B可通过与FceRI结合抑制IgE介导的肥大细胞的活化和血清素的释放[45]。这暗示LILRB3可能充当粒细胞成熟过程中控制活化和炎症反应的重要检查点。

3.2. LILRB3通过骨髓细胞的重编程诱导免疫抑制

鉴于髓系免疫细胞上LILRB3的高表达水平以及其相对限制性,LILRB3一直以来都被视为一个具有吸引力的免疫调节靶点。然而,受限于缺乏特定的试剂和模型系统,对其确切功能和免疫调节潜力尚未进行充分探索[36]。Yeboah等人构建了特异性结合LILRB3的单克隆抗体(Monoclonal antibody, mAb),并探究了LILRB3 mAbs激活LILRB3后介导的免疫功能变化[46]。骨髓来源的抑制细胞(Myeloid-derived suppressor cells, MDSCs)具有M1和M2巨噬细胞的前体特征,分化为M1和M2巨噬细胞的分子机制与广泛的表观遗传学修饰、转录重编程和代谢变化相关联[47]。M2型巨噬细胞在多种人类癌症中被认为发挥着促进肿瘤生长和发展的作用[48]。在人类单核细胞的LILRB3激活后,包括双调蛋白(Amphiregulin, AREG)、激活素A (Activin A)和CD276在内的M2极化巨噬细胞相关基因被差异调节,免疫抑制受体的上调可能抑制T细胞的活化及其增殖能力[49]-[51]。LILRB3的激活可通过重新编程骨髓细胞并赋予耐受性,从而产生强大的免疫抑制作用,并表明调节LILRB3活性可能在各种疾病环境中提供有潜力的新治疗策略[46]。Ma等人的研究也表明,LILRB3的敲除可促进MDSCToll样受体(Toll-like receptors, TLR)、信号转导和转录激活蛋白1 (Signal transducer and activator of transcription 1, STAT1)以及核因子κB (Nuclear factor kappa-light-chain-enhancer of activated B cells, NF-kB)信号的激活,促进MDSC向M1型巨噬细胞分化、T辅助细胞(Regulatory T cells, Tregs)的增殖和分化及原发肿瘤的生长和肺转移[52]

4. LILRB3与人类恶性肿瘤

4.1. 急性髓系白血病

急性髓系白血病(Acute myeloid leukemia, AML)是一种侵袭性的血液恶性肿瘤,被认为起源于造血干细胞或更早期阶段的髓系前体细胞。针对该疾病的治疗选择有限且预后不佳,尤其是对年长患者而言。尽管近年来免疫治疗在AML中取得一些进展,但是患者远期生存率仍然偏低[53]

鉴于LILRB3在髓系免疫细胞中高表达的事实,LILRB3在人类恶性肿瘤进展和治疗中所扮演角色这一问题在AML中得到了最早和最全面的探讨。Wu等人证实了在M4和M5亚型的AML患者样本中LILRB3高度表达,同时针对LILRB3的shRNA的表达可减缓AML的发展,表明高表达LILRB3的AML细胞系具有内在的生长优势[9]。AML细胞表面的LILRB3与肿瘤坏死因子受体相关因子2 (TRAF2)发生交联,当被配体激活结合时,cFLIP会被招募到LILRB3/TRAF2复合物中,从而激活NF-κB。这种NF-κB信号传导的上调增强了AML细胞的存活,同时抑制了T细胞的抗白血病活性[9] [21]。Mai等人对AML各个亚型的LILRB3表达水平进行分析,结果表明在预后较差的M4/M5亚型中LILRB3持续富集,而在预后较好的M3亚型中LILRB3表达降低。LILRB3阻断可抑制AML进展,促进巨噬细胞向M1样表型转化,这与先前Ma等人在PIR-B敲除小鼠的MDSC细胞群中观察到的炎症反应增加现象相互印证[52] [54]

同时,既往针对AML特异性表面分子的靶向治疗尝试并不成功,部分原因是由于靶向目标的广泛表达会引起健康造血细胞或其他器官的毒副作用[53]。LILRB3-CAR T细胞(Chimeric antigen receptor T cell)在体外和体内都表现出强大的AML细胞杀伤作用,LILRB3在人脑组织中的相对低表达可能预示着低神经毒性降低,显示出临床转化的潜力。考虑到M4/M5亚型的AML患者缺乏可用的亚型特异性治疗方案,基于LILRB3的单克隆抗体和CAR T细胞方案可能优先适用且于这些患者[54]。微小RNA (microRNA, miRNA)在调控多种生物学过程中发挥重要作用,其在治疗领域的潜力正逐渐被认识。一种基于miRNA的药物已经进入癌症II期临床试验阶段[55]。研究表明miR-103a-2-5p可以通过调控LILRB3的表达抑制AML细胞的增殖并诱导细胞凋亡。miR103a-2-5p/LILRB3信号通路可能通过抑制免疫抑制受体的表达,同时增强CD8+ T细胞的免疫活性。基于miRNA/LILRB3的靶向治疗策略可能是未来研究的重要方向[56]

4.2. 结直肠癌

结直肠癌(Colorectal cancer, CRC)是世界上第四大致命的癌症,全球每年有近90万人因此丧生[57]。Shi等人的研究发现,LILRB3在CRC细胞的表达水平明显升高且与CRC患者的不良预后相关。在进一步的体内实验中,抑制LILRB3可逆转CRC的抑制性肿瘤免疫微环境(Tumor immune microenvironment, TIME)。这可能和LILRB3参与促进CD8+ T细胞浸润水平的降低和抑制肿瘤相关巨噬细胞(Tumor-associated macrophages, TAMs)的M2极化相关,但具体机制尚待进一步研究[8]

4.3. 胶质瘤

胶质瘤是最普遍的原发性脑部肿瘤种类。在胶质瘤的TIME中,表达共抑制受体的TAMs高水平存在,构成了免疫景观的重要组成部分[58]。据Zhuang等人的研究结果,LILRB3主要在神经胶质瘤的单核细胞衍生TAMs (Monocyte-derived TAMs, Mo-TAMs)上表达,高表达的LILRB3是不同级别胶质瘤的独立负面预后因素[7]。这可能与多形性胶质母细胞瘤(Glioblastoma multiforme, GBM)的细胞状态和TAMs之间的相互作用调节肿瘤免疫环境相关。已有研究表明巨噬细胞可诱导胶质母细胞瘤细胞转变为间充质样状态(Mesenchymal-likestates, MES-like states),这种状态的细胞表现出与间充质细胞相似的特征,如增强的迁移能力、侵袭性以及对治疗的抵抗性,对肿瘤的发展和免疫逃逸机制产生重要影响[59]。在胶质瘤组织微血管区域高度表达LILRB3的Mo-TAMs与功能衰竭的T细胞和MES样特征密切相关,这一特点在LILRB3和PD-1表达均升高的亚群中更为明显,表明LILRB3是PD-1抑制剂联合治疗的潜在靶点[7]

5. 展望

LILRB3正在成为免疫稳态的重要介质,调节耐受性和免疫激活之间的平衡。越来越多的证据支持LILRB3在人类免疫调控与肿瘤进展中发挥重要作用。目前对人类LILRB3生物学功能和串扰的理解受到对其配体的理解的限制,迄今为止仅识别了部分LILRB3的潜在配体。同时,小鼠中直系同源物PIR-B的表达模式和生物学功能与LILRB3有所差异,这给深入研究LILRB3的体内实验带来了障碍,开发LILRB3转基因小鼠或基因敲除小鼠或许有助于进一步探究LILRB3的配体概况、免疫学功能和作为治疗靶点的潜力。

就其治疗潜力而言,LILRB3在促进肿瘤进展和参与肿瘤抑制性免疫微环境方面具有双重作用,这表明开发新型基于LILRB3的免疫疗法有望同时降低肿瘤负荷和逆转免疫抑制。针对AML的临床前证据表明LILRB3是免疫疗法的理想靶标。然而必须考虑的是,LILRB3与LILRA6间的高度同源性及LILRB3自身的高度多态性。针对抑制性LILRB3的试剂可能会同时介导LILRA6的激活或抑制,这可能会干扰治疗效果。同时,LILRB3具有多种等位基因变体,不同个体间表达模式的差异是LILRB3靶向疗法需要解决的问题。

总之,LILRB3广泛地参与人类免疫调控和肿瘤进展,深入研究LILRB3与各种肿瘤的发生、发展关系以及作用机制,有可能为肿瘤诊断和靶向治疗提供新的预后标志物和治疗靶点。

NOTES

*通讯作者。

参考文献

[1] Motzer, R.J., Rane, P.P., Saretsky, T.L., Pawar, D., Martin Nguyen, A., Sundaram, M., et al. (2023) Patient-Reported Outcome Measurement and Reporting for Patients with Advanced Renal Cell Carcinoma: A Systematic Literature Review. European Urology, 84, 406-417.
https://doi.org/10.1016/j.eururo.2023.07.006
[2] Sánchez-Gastaldo, A., Kempf, E., González del Alba, A., et al. (2017) Systemic Treatment of Renal Cell Cancer: A Comprehensive Review. Cancer Treatment Reviews, 60, 77-89.
https://doi.org/10.1016/j.ctrv.2017.08.010
[3] Tay, C., Tanaka, A. and Sakaguchi, S. (2023) Tumor-Infiltrating Regulatory T Cells as Targets of Cancer Immunotherapy. Cancer Cell, 41, 450-465.
https://doi.org/10.1016/j.ccell.2023.02.014
[4] Cosman, D., Fanger, N., Borges, L., Kubin, M., Chin, W., Peterson, L., et al. (1997) A Novel Immunoglobulin Superfamily Receptor for Cellular and Viral MHC Class I Molecules. Immunity, 7, 273-282.
https://doi.org/10.1016/s1074-7613(00)80529-4
[5] Colonna, M., Samaridis, J., Cella, M., Angman, L., Allen, R.L., O’Callaghan, C.A., et al. (1998) Cutting Edge: Human Myelomonocytic Cells Express an Inhibitory Receptor for Classical and Nonclassical MHC Class I Molecules. The Journal of Immunology, 160, 3096-3100.
https://doi.org/10.4049/jimmunol.160.7.3096
[6] Hirayasu, K. and Arase, H. (2018) Leukocyte Immunoglobulin-Like Receptor (LILR). In: Choi, S., Ed., Encyclopedia of Signaling Molecules, Springer International Publishing, 2854-2861.
https://doi.org/10.1007/978-3-319-67199-4_101689
[7] Zhuang, Q., Liu, Y., Wang, H., et al. (2023) LILRB3 Suppresses Immunity in Glioma and Is Associated with Poor Prognosis. Clinical and Translational Medicine, 13, e1396.
https://doi.org/10.1002/ctm2.1396
[8] Shi, W., Zhang, F., Chen, X., Wang, S., Zhang, H., Yang, Z., et al. (2022) Tumor-Derived Immunoglobulin Like Transcript 5 Induces Suppressive Immunocyte Infiltration in Colorectal Cancer. Cancer Science, 113, 1939-1954.
https://doi.org/10.1111/cas.15360
[9] Wu, G., Xu, Y., Schultz, R.D., Chen, H., Xie, J., Deng, M., et al. (2021) LILRB3 Supports Acute Myeloid Leukemia Development and Regulates T-Cell Antitumor Immune Responses through the TRAF2-cFLIP-Nf-κB Signaling Axis. Nature Cancer, 2, 1170-1184.
https://doi.org/10.1038/s43018-021-00262-0
[10] Storm, L., Bruijnesteijn, J., De Groot, N.G., et al. (2021) The Genomic Organization of the LILR Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health and Disease. Frontiers in Immunology, 12, Article 716289.
https://doi.org/10.3389/fimmu.2021.716289
[11] Sambrook, J.G., Bashirova, A., Andersen, H., et al. (2006) Identification of the Ancestral Killer Immunoglobulin-Like Receptor Gene in Primates. BMC Genomics, 7, Article No. 209.
https://doi.org/10.1186/1471-2164-7-209
[12] Bashirova, A.A., Apps, R., Vince, N., Mochalova, Y., Yu, X.G. and Carrington, M. (2013) Diversity of the Human LILRB3/A6 Locus Encoding a Myeloid Inhibitory and Activating Receptor Pair. Immunogenetics, 66, 1-8.
https://doi.org/10.1007/s00251-013-0730-9
[13] Pfistershammer, K., Lawitschka, A., Klauser, C., Leitner, J., Weigl, R., Heemskerk, M.H.M., et al. (2009) Allogeneic Disparities in Immunoglobulin-Like Transcript 5 Induce Potent Antibody Responses in Hematopoietic Stem Cell Transplant Recipients. Blood, 114, 2323-2332.
https://doi.org/10.1182/blood-2008-10-183814
[14] Hirayasu, K., Sun, J., Hasegawa, G., et al. (2021) Characterization of LILRB3 and LILRA6 Allelic Variants in the Japanese Population. Journal of Human Genetics, 66, 739-748.
https://doi.org/10.1038/s10038-021-00906-0
[15] Bashirova, A.A., Kasprzak, W., O’hUigin, C. and Carrington, M. (2022) Distinct Frequency Patterns of LILRB3 and LILRA6 Allelic Variants in Europeans. Immunogenetics, 75, 263-267.
https://doi.org/10.1007/s00251-022-01286-1
[16] Anderson, K.J. and Allen, R.L. (2009) Regulation of T-Cell Immunity by Leucocyte Immunoglobulin-Like Receptors: Innate Immune Receptors for Self on Antigen-Presenting Cells. Immunology, 127, 8-17.
https://doi.org/10.1111/j.1365-2567.2009.03097.x
[17] Zhou, J., Wang, Y., Huang, G., Yang, M., Zhu, Y., Jin, C., et al. (2023) LilrB3 Is a Putative Cell Surface Receptor of APOE4. Cell Research, 33, 116-130.
https://doi.org/10.1038/s41422-022-00759-y
[18] Redondo-García, S., Barritt, C., Papagregoriou, C., et al. (2023) Human Leukocyte Immunoglobulin-Like Receptors in Health and Disease. Frontiers in Immunology, 14, Article 1282874.
https://doi.org/10.3389/fimmu.2023.1282874
[19] Jones, D.C., Hewitt, C.R.A., López-Álvarez, M.R., Jahnke, M., Russell, A.I., Radjabova, V., et al. (2016) Allele-Specific Recognition by LILRB3 and LILRA6 of a Cytokeratin 8-Associated Ligand on Necrotic Glandular Epithelial Cells. Oncotarget, 7, 15618-15631.
https://doi.org/10.18632/oncotarget.6905
[20] van der Touw, W., Kang, K., Luan, Y., Ma, G., Mai, S., Qin, L., et al. (2018) Glatiramer Acetate Enhances Myeloid-Derived Suppressor Cell Function via Recognition of Paired Ig-Like Receptor B. The Journal of Immunology, 201, 1727-1734.
https://doi.org/10.4049/jimmunol.1701450
[21] Lasry, A. and Aifantis, I. (2021) LILRB3 as a Regulator of AML Survival. Nature Cancer, 2, 1122-1123.
https://doi.org/10.1038/s43018-021-00285-7
[22] Hirayasu, K. and Arase, H. (2015) Functional and Genetic Diversity of Leukocyte Immunoglobulin-Like Receptor and Implication for Disease Associations. Journal of Human Genetics, 60, 703-708.
https://doi.org/10.1038/jhg.2015.64
[23] An, H., Chandra, V., Piraino, B., Borges, L., Geczy, C., Mcneil, H.P., et al. (2010) Soluble LILRA3, a Potential Natural Antiinflammatory Protein, Is Increased in Patients with Rheumatoid Arthritis and Is Tightly Regulated by Interleukin 10, Tumor Necrosis Factor-α, and Interferon-γ. The Journal of Rheumatology, 37, 1596-1606.
https://doi.org/10.3899/jrheum.091119
[24] Lebbink, R.J., van den Berg, M.C.W., de Ruiter, T., Raynal, N., van Roon, J.A.G., Lenting, P.J., et al. (2008) The Soluble Leukocyte-Associated Ig-Like Receptor (LAIR)-2 Antagonizes the Collagen/LAIR-1 Inhibitory Immune Interaction. The Journal of Immunology, 180, 1662-1669.
https://doi.org/10.4049/jimmunol.180.3.1662
[25] Deng, M., Chen, H., Liu, X., Huang, R., He, Y., Yoo, B., et al. (2021) Leukocyte Immunoglobulin-Like Receptor Subfamily B: Therapeutic Targets in Cancer. Antibody Therapeutics, 4, 16-33.
https://doi.org/10.1093/abt/tbab002
[26] Takeda, K. and Nakamura, A. (2017) Regulation of Immune and Neural Function via Leukocyte Ig-Like Receptors. The Journal of Biochemistry, 162, 73-80.
https://doi.org/10.1093/jb/mvx036
[27] Kim, T., Vidal, G.S., Djurisic, M., William, C.M., Birnbaum, M.E., Garcia, K.C., et al. (2013) Human LilrB2 Is a β-Amyloid Receptor and Its Murine Homolog PirB Regulates Synaptic Plasticity in an Alzheimer’s Model. Science, 341, 1399-1404.
https://doi.org/10.1126/science.1242077
[28] Karo-Atar, D., Moshkovits, I., Eickelberg, O., Königshoff, M. and Munitz, A. (2013) Paired Immunoglobulin-Like Receptor-B Inhibits Pulmonary Fibrosis by Suppressing Profibrogenic Properties of Alveolar Macrophages. American Journal of Respiratory Cell and Molecular Biology, 48, 456-464.
https://doi.org/10.1165/rcmb.2012-0329oc
[29] Cheng, H., Mohammed, F., Nam, G., Chen, Y., Qi, J., Garner, L.I., et al. (2011) Crystal Structure of Leukocyte Ig-Like Receptor LILRB4 (ILT3/LIR-5/CD85k). Journal of Biological Chemistry, 286, 18013-18025.
https://doi.org/10.1074/jbc.m111.221028
[30] Ayukawa, S., Kamoshita, N., Nakayama, J., Teramoto, R., Pishesha, N., Ohba, K., et al. (2021) Epithelial Cells Remove Precancerous Cells by Cell Competition via MHC Class I-LILRB3 Interaction. Nature Immunology, 22, 1391-1402.
https://doi.org/10.1038/s41590-021-01045-6
[31] Wong, C.C. and Yu, J. (2022) MHC Class I-LILRB3 Delivers a Punch to Eliminate Precancerous Cells. Cellular & Molecular Immunology, 19, 655-656.
https://doi.org/10.1038/s41423-021-00821-6
[32] Zheng, J., Umikawa, M., Cui, C., Li, J., Chen, X., Zhang, C., et al. (2012) Inhibitory Receptors Bind ANGPTLs and Support Blood Stem Cells and Leukaemia Development. Nature, 485, 656-660.
https://doi.org/10.1038/nature11095
[33] Cabia, B., Andrade, S., Carreira, M.C., Casanueva, F.F. and Crujeiras, A.B. (2016) A Role for Novel Adipose Tissue-Secreted Factors in Obesity-Related Carcinogenesis. Obesity Reviews, 17, 361-376.
https://doi.org/10.1111/obr.12377
[34] Thorin-Trescases, N., Labbé, P., Mury, P., Lambert, M. and Thorin, E. (2021) Angptl2 Is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence. International Journal of Molecular Sciences, 22, Article 12232.
https://doi.org/10.3390/ijms222212232
[35] Blumenfeld, J., Yip, O., Kim, M.J. and Huang, Y. (2024) Cell Type-Specific Roles of APOE4 in Alzheimer Disease. Nature Reviews Neuroscience, 25, 91-110.
https://doi.org/10.1038/s41583-023-00776-9
[36] Huang, R., Liu, X., Kim, J., Deng, H., Deng, M., Gui, X., et al. (2023) LILRB3 Supports Immunosuppressive Activity of Myeloid Cells and Tumor Development. Cancer Immunology Research, 12, 350-362.
https://doi.org/10.1158/2326-6066.cir-23-0496
[37] Hofer, J., Forster, F., Isenman, D.E., Wahrmann, M., Leitner, J., Hölzl, M.A., et al. (2015) Ig-Like Transcript 4 as a Cellular Receptor for Soluble Complement Fragment C4d. The FASEB Journal, 30, 1492-1503.
https://doi.org/10.1096/fj.15-275594
[38] Nakayama, M., Underhill, D.M., Petersen, T.W., Li, B., Kitamura, T., Takai, T., et al. (2007) Paired Ig-Like Receptors Bind to Bacteria and Shape TLR-Mediated Cytokine Production. The Journal of Immunology, 178, 4250-4259.
https://doi.org/10.4049/jimmunol.178.7.4250
[39] van Rees, D.J., Szilagyi, K., Kuijpers, T.W., Matlung, H.L. and van den Berg, T.K. (2016) Immunoreceptors on Neutrophils. Seminars in Immunology, 28, 94-108.
https://doi.org/10.1016/j.smim.2016.02.004
[40] Kuroki, K., Furukawa, A. and Maenaka, K. (2012) Molecular Recognition of Paired Receptors in the Immune System. Frontiers in Microbiology, 3, Article 429.
https://doi.org/10.3389/fmicb.2012.00429
[41] Favier, B. (2016) Regulation of Neutrophil Functions through Inhibitory Receptors: An Emerging Paradigm in Health and Disease. Immunological Reviews, 273, 140-155.
https://doi.org/10.1111/imr.12457
[42] Lewis Marffy, A.L. and McCarthy, A.J. (2020) Leukocyte Immunoglobulin-Like Receptors (LILRs) on Human Neutrophils: Modulators of Infection and Immunity. Frontiers in Immunology, 11, Article 857.
[43] Zhao, Y., van Woudenbergh, E., Zhu, J., Heck, A.J.R., van Kessel, K.P.M., de Haas, C.J.C., et al. (2020) The Orphan Immune Receptor LILRB3 Modulates Fc Receptor-Mediated Functions of Neutrophils. The Journal of Immunology, 204, 954-966.
https://doi.org/10.4049/jimmunol.1900852
[44] Sloane, D.E., Tedla, N., Awoniyi, M., MacGlashan, D.W., Borges, L., Austen, K.F., et al. (2004) Leukocyte Immunoglobulin-Like Receptors: Novel Innate Receptors for Human Basophil Activation and Inhibition. Blood, 104, 2832-2839.
https://doi.org/10.1182/blood-2004-01-0268
[45] Uehara, T., Bléry, M., Kang, D., Chen, C., Ho, L.H., Gartland, G.L., et al. (2001) Inhibition of Ige-Mediated Mast Cell Activation by the Paired Ig-Like Receptor PIR-b. Journal of Clinical Investigation, 108, 1041-1050.
https://doi.org/10.1172/jci200112195
[46] Yeboah, M., Papagregoriou, C., Jones, D.C., et al. (2020) LILRB3 (ILT5) Is a Myeloid Cell Checkpoint that Elicits Profound Immunomodulation. JCI Insight, 5, e141593.
https://doi.org/10.1172/jci.insight.141593
[47] He, L., Jhong, J.-H., Chen, Q., Huang, K.-Y., Strittmatter, K., Kreuzer, J., et al. (2021) Global Characterization of Macrophage Polarization Mechanisms and Identification of M2-Type Polarization Inhibitors. Cell Reports, 37, Article 109955.
https://doi.org/10.1016/j.celrep.2021.109955
[48] 戈文珂, 吴卫兵. 肿瘤微环境中肿瘤相关巨噬细胞极化的影响因素及其意义[J]. 中国肺癌杂志, 2023, 26(3): 228-237.
[49] Ogawa, K., Funaba, M., Chen, Y. and Tsujimoto, M. (2006) Activin a Functions as a Th2 Cytokine in the Promotion of the Alternative Activation of Macrophages. The Journal of Immunology, 177, 6787-6794.
https://doi.org/10.4049/jimmunol.177.10.6787
[50] Picarda, E., Ohaegbulam, K.C. and Zang, X. (2016) Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clinical Cancer Research, 22, 3425-3431.
https://doi.org/10.1158/1078-0432.ccr-15-2428
[51] Vlaicu, P., Mertins, P., Mayr, T., et al. (2013) Monocytes/Macrophages Support Mammary Tumor Invasivity by Co-Secreting Lineage-Specific EGFR Ligands and a STAT3 Activator. BMC Cancer, 13, Article No. 197.
https://doi.org/10.1186/1471-2407-13-197
[52] Ma, G., Pan, P.-Y., Eisenstein, S., Divino, C.M., Lowell, C.A., Takai, T., et al. (2011) Paired Immunoglobin-Like Receptor-B Regulates the Suppressive Function and Fate of Myeloid-Derived Suppressor Cells. Immunity, 34, 385-395.
https://doi.org/10.1016/j.immuni.2011.02.004
[53] Liu, H. (2021) Emerging Agents and Regimens for AML. Journal of Hematology & Oncology, 14, Article No. 49.
https://doi.org/10.1186/s13045-021-01062-w
[54] Mai, S., Hodges, A., Chen, H., Zhang, J., Wang, Y., Liu, Y., et al. (2023) LILRB3 Modulates Acute Myeloid Leukemia Progression and Acts as an Effective Target for CAR T-Cell Therapy. Cancer Research, 83, 4047-4062.
https://doi.org/10.1158/0008-5472.can-22-2483
[55] Chen, Y., Gao, D.-Y. and Huang, L. (2015) In vivo Delivery of miRNAs for Cancer Therapy: Challenges and Strategies. Advanced Drug Delivery Reviews, 81, 128-141.
https://doi.org/10.1016/j.addr.2014.05.009
[56] Cen, Q., Chen, J., Guo, J., et al. (2024) CLPs-miR-103a-2-5p Inhibits Proliferation and Promotes Cell Apoptosis in AML Cells by Targeting LILRB3 and Nrf2/HO-1 Axis, Regulating CD8+ T Cell Response. Journal of Translational Medicine, 22, Article 278.
https://doi.org/10.1186/s12967-024-05070-5
[57] Dekker, E., Tanis, P.J., Vleugels, J.L.A., Kasi, P.M. and Wallace, M.B. (2019) Colorectal Cancer. The Lancet, 394, 1467-1480.
https://doi.org/10.1016/s0140-6736(19)32319-0
[58] Xu, S., Tang, L., Li, X., et al. (2020) Immunotherapy for Glioma: Current Management and Future Application. Cancer Letters, 476, 1-12.
https://doi.org/10.1016/j.canlet.2020.02.002
[59] Hara, T., Chanoch-Myers, R., Mathewson, N.D., et al. (2021) Interactions between Cancer Cells and Immune Cells Drive Transitions to Mesenchymal-Like States in Glioblastoma. Cancer Cell, 39, 779-792.
https://doi.org/10.1016/j.ccell.2021.05.002