|
[1]
|
Materassi, M., Forte, B., Coster, A.J., et al. (2020) The Dynamical Ionosphere: A Systems Approach to Ionospheric Irregularity. Elsevier, 323 p.
|
|
[2]
|
Restier-Verlet, J., El-Nachef, L., Ferlazzo, M.L., Al-Choboq, J., Granzotto, A., Bouchet, A., et al. (2021) Radiation on Earth or in Space: What Does It Change? International Journal of Molecular Sciences, 22, Article 3739. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Guo, Z., Zhou, G. and Hu, W. (2022) Carcinogenesis Induced by Space Radiation: A Systematic Review. Neoplasia, 32, Article 100828. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Furukawa, S., Nagamatsu, A., Nenoi, M., Fujimori, A., Kakinuma, S., Katsube, T., et al. (2020) Space Radiation Biology for “Living in Space”. BioMed Research International, 2020, Article ID: 4703286. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Dachev, T.P., Bankov, N.G., Tomov, B.T., Matviichuk, Y.N., Dimitrov, P.G., Häder, D.-P., et al. (2017) Overview of the ISS Radiation Environment Observed during the ESA EXPOSE-R2 Mission in 2014-2016. Space Weather, 15, 1475-1489. [Google Scholar] [CrossRef]
|
|
[6]
|
Baran, R., Marchal, S., Garcia Campos, S., Rehnberg, E., Tabury, K., Baselet, B., et al. (2021) The Cardiovascular System in Space: Focus on in vivo and in vitro Studies. Biomedicines, 10, Article 59. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Banfill, K., Giuliani, M., Aznar, M., Franks, K., McWilliam, A., Schmitt, M., et al. (2021) Cardiac Toxicity of Thoracic Radiotherapy: Existing Evidence and Future Directions. Journal of Thoracic Oncology, 16, 216-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Mitchell, A., Pimenta, D., Gill, J., Ahmad, H. and Bogle, R. (2019) Cardiovascular Effects of Space Radiation: Implications for Future Human Deep Space Exploration. European Journal of Preventive Cardiology, 26, 1707-1714. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sishc, B.J., Zawaski, J., Saha, J., Carnell, L.S., Fabre, K.M. and Elgart, S.R. (2022) The Need for Biological Countermeasures to Mitigate the Risk of Space Radiation-Induced Carcinogenesis, Cardiovascular Disease, and Central Nervous System Deficiencies. Life Sciences in Space Research, 35, 4-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Szczepaniak, P., Siedlinski, M., Hodorowicz-Zaniewska, D., Nosalski, R., Mikolajczyk, T.P., Dobosz, A.M., et al. (2022) Breast Cancer Chemotherapy Induces Vascular Dysfunction and Hypertension through a NOX4-Dependent Mechanism. Journal of Clinical Investigation, 132, e149117. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kashcheev, V.V., Chekin, S.Y., Karpenko, S.V., Maksioutov, M.A., Menyaylo, A.N., Tumanov, K.A., et al. (2017) Radiation Risk of Cardiovascular Diseases in the Cohort of Russian Emergency Workers of the Chernobyl Accident. Health Physics, 113, 23-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hughson, R.L., Helm, A. and Durante, M. (2017) Heart in Space: Effect of the Extraterrestrial Environment on the Cardiovascular System. Nature Reviews Cardiology, 15, 167-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Abdel-Qadir, H., Ethier, J.-L., Lee, D.S., Thavendiranathan, P. and Amir, E. (2017) Cardiovascular Toxicity of Angiogenesis Inhibitors in Treatment of Malignancy: A Systematic Review and Meta-Analysis. Cancer Treatment Reviews, 53, 120-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Willey, J.S., Britten, R.A., Blaber, E., Tahimic, C.G.T., Chancellor, J., Mortreux, M., et al. (2021) The Individual and Combined Effects of Spaceflight Radiation and Microgravity on Biologic Systems and Functional Outcomes. Journal of Environmental Science and Health, Part C, 39, 129-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Afshinnekoo, E., Scott, R.T., MacKay, M.J., Pariset, E., Cekanaviciute, E., Barker, R., et al. (2021) Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell, 184, 6002. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Giacinto, O., Pelliccia, F., Minati, A., De Crescenzo, F., Garo, M.L., Chello, M., et al. (2022) Cosmic Radiations and the Cardiovascular System: A Narrative Review. Cardiology in Review. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Locatelli, L., Castiglioni, S. and Maier, J.A.M. (2022) From Cultured Vascular Cells to Vessels: The Cellular and Molecular Basis of Vascular Dysfunction in Space. Frontiers in Bioengineering and Biotechnology, 10, Article 862059. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zou, B., Schuster, J.P., Niu, K., Huang, Q., Rühle, A. and Huber, P.E. (2019) Radiotherapy-Induced Heart Disease: A Review of the Literature. Precision Clinical Medicine, 2, 270-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Isasi, E., Isasi, M.E. and van Loon, J.J.W.A. (2022) The Application of Artificial Gravity in Medicine and Space. Frontiers in Physiology, 13, Article 952723. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Takahashi, K., Okumura, H., Guo, R. and Naruse, K. (2017) Effect of Oxidative Stress on Cardiovascular System in Response to Gravity. International Journal of Molecular Sciences, 18, Article 1426. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Pacinella, G., Ciaccio, A.M. and Tuttolomondo, A. (2022) Endothelial Dysfunction and Chronic Inflammation: The Cornerstones of Vascular Alterations in Age-Related Diseases. International Journal of Molecular Sciences, 23, Article 15722. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yan, X., Sasi, S.P., Gee, H., Lee, J., Yang, Y., Mehrzad, R., et al. (2014) Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation. PLOS ONE, 9, e110269. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Beck, M., Tabury, K., Moreels, M., Jacquet, P., Van Oostveldt, P., De Vos, W.H., et al. (2012) Simulated Microgravity Decreases Apoptosis in Fetal Fibroblasts. International Journal of Molecular Medicine, 30, 309-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Beck, M., Moreels, M., Quintens, R., Abou-El-Ardat, K., El-Saghire, H., Tabury, K., et al. (2014) Chronic Exposure to Simulated Space Conditions Predominantly Affects Cytoskeleton Remodeling and Oxidative Stress Response in Mouse Fetal Fibroblasts. International Journal of Molecular Medicine, 34, 606-615. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Montesinos, C.A., Khalid, R., Cristea, O., Greenberger, J.S., Epperly, M.W., Lemon, J.A., et al. (2021) Space Radiation Protection Countermeasures in Microgravity and Planetary Exploration. Life, 11, Article 829. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kim, W., Kang, J., Lee, S. and Youn, B. (2017) Effects of Traditional Oriental Medicines as Anti-Cytotoxic Agents in Radiotherapy. Oncology Letters, 13, 4593-4601. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hussain, S.M., Adnan, M., Rasul, A., Shah, M.A., Hussain, G., Asrar, M., et al. (2021) Radioprotective Role of Natural Polyphenols: From Sources to Mechanisms. Anti-Cancer Agents in Medicinal Chemistry, 22, 30-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, L., Chen, R., Lin, Y., Humayun, A., Fornace, A.J. and Li, H. (2021) 3,3’-Diindolylmethane Enhances Tumor Regression after Radiation through Protecting Normal Cells to Modulate Antitumor Immunity. Advances in Radiation Oncology, 6, Article 100601. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Morita, A., Wang, B., Tanaka, K., Katsube, T., Murakami, M., Shimokawa, T., et al. (2020) Protective Effects of p53 Regulatory Agents against High-Let Radiation-Induced Injury in Mice. Frontiers in Public Health, 8, Article 601124. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
van der Veen, S.J., Ghobadi, G., de Boer, R.A., Faber, H., Cannon, M.V., Nagle, P.W., et al. (2015) ACE Inhibition Attenuates Radiation-Induced Cardiopulmonary Damage. Radiotherapy and Oncology, 114, 96-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Dai, S., Wen, Y., Luo, P., Ma, L., Liu, Y., Ai, J., et al. (2022) Therapeutic Implications of Exosomes in the Treatment of Radiation Injury. Burns & Trauma, 10, Article tkab043. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Dizin, E., Olivier, V., Roth, I., Sassi, A., Arnoux, G., Ramakrishnan, S., et al. (2021) Activation of the Hypoxia-Inducible Factor Pathway Inhibits Epithelial Sodium Channel-Mediated Sodium Transport in Collecting Duct Principal Cells. Journal of the American Society of Nephrology, 32, 3130-3145. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hou, G., Li, J., Liu, W., Wei, J., Xin, Y. and Jiang, X. (2022) Mesenchymal Stem Cells in Radiation-Induced Lung Injury: From Mechanisms to Therapeutic Potential. Frontiers in Cell and Developmental Biology, 10, Article 1100305. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Shrum, S.A., Nukala, U., Shrimali, S., Pineda, E.N., Krager, K.J., Thakkar, S., et al. (2023) Tocotrienols Provide Radioprotection to Multiple Organ Systems through Complementary Mechanisms of Antioxidant and Signaling Effects. Antioxidants, 12, Article 1987. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Shakyawar, S.K., Mishra, N.K., Vellichirammal, N.N., Cary, L., Helikar, T., Powers, R., et al. (2022) A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiation Research, 199, 89-111. [Google Scholar] [CrossRef] [PubMed]
|