|
[1]
|
Sutherland, J.M., Mok, J., Liu, G., Karimuddin, A. and Crump, T. (2020) A Cost-Utility Study of Laparoscopic Cholecystectomy for the Treatment of Symptomatic Gallstones. Journal of Gastrointestinal Surgery, 24, 1314-1319. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Cortés, V., Quezada, N., Uribe, S., Arrese, M. and Nervi, F. (2017) Effect of Cholecystectomy on Hepatic Fat Accumulation and Insulin Resistance in Non-Obese Hispanic Patients: A Pilot Study. Lipids in Health and Disease, 16, Article No. 129. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Yoon, W.J., Kim, H., Park, E., Ryu, S., Chang, Y., Shin, H., et al. (2019) The Impact of Cholecystectomy on the Gut Microbiota: A Case-Control Study. Journal of Clinical Medicine, 8, Article 79. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
叶佳怡, 冯金华, 李卡. 胆囊切除术后患者肠道微生物群改变的研究进展[J]. 中国普外基础与临床杂志, 2022, 29(12): 1653-1659. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2023&filename=ZPWL202212020&v
|
|
[5]
|
Wang, Q., Lu, Q., Shao, W., Jiang, Z. and Hu, H. (2021) Dysbiosis of Gut Microbiota after Cholecystectomy Is Associated with Non‐alcoholic Fatty Liver Disease in Mice. FEBS Open Bio, 11, 2329-2339. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Rodríguez-Antonio, I., López-Sánchez, G.N., Garrido-Camacho, V.Y., Uribe, M., Chávez-Tapia, N.C. and Nuño-Lámbarri, N. (2020) Cholecystectomy as a Risk Factor for Non-Alcoholic Fatty Liver Disease Development. HPB, 22, 1513-1520. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tokuhara, D. (2021) Role of the Gut Microbiota in Regulating Non-Alcoholic Fatty Liver Disease in Children and Adolescents. Frontiers in Nutrition, 8, Article 700058. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yang, S., Yu, D., Liu, J., Qiao, Y., Gu, S., Yang, R., et al. (2023) Global Publication Trends and Research Hotspots of the Gut-Liver Axis in NAFLD: A Bibliometric Analysis. Frontiers in Endocrinology, 14, Article 1121540. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jiao, N., Baker, S.S., Chapa-Rodriguez, A., Liu, W., Nugent, C.A., Tsompana, M., et al. (2017) Suppressed Hepatic Bile Acid Signalling Despite Elevated Production of Primary and Secondary Bile Acids in NAFLD. Gut, 67, 1881-1891. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
丁雪娇, 赵双清, 李雅丽. 非酒精性脂肪性肝病的流行病学及防治[J]. 中国临床保健杂志, 2021, 24(6): 742-746. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2022&filename=LZBJ202106006
|
|
[11]
|
Latenstein, C.S.S., Alferink, L.J.M., Darwish Murad, S., Drenth, J.P.H., van Laarhoven, C.J.H.M. and de Reuver, P.R. (2020) The Association between Cholecystectomy, Metabolic Syndrome, and Nonalcoholic Fatty Liver Disease: A Population-Based Study. Clinical and Translational Gastroenterology, 11, e00170. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
陈静, 吴建荣, 韩亚鹏, 等. 体重正常人群胆囊切除术与NAFLD的相关性分析[J]. 新疆医学, 2023, 53(7): 771-773, 794. https://kns.cnki.net/kcms2/article/abstract?v=CNKoHtoL3RHjnjv_OU3Zy_oP5QSHh_CiZo-4bFNq1Q0CgOivm96j5NegiUWxjgZjBL1acJiOzWlJiUfj8DhVBc8raKcih1HKTAxlnBfUxnznKvznM4fNyt9YFNrJAu9i&uniplatform=NZKPT&language=gb
|
|
[13]
|
Pal, S.C., Castillo-Castañeda, S.M., Díaz-Orozco, L.E., Ramírez-Mejía, M.M., Dorantes-Heredia, R., Alonso-Morales, R., et al. (2023) Molecular Mechanisms Involved in MAFLD in Cholecystectomized Patients: A Cohort Study. Genes, 14, Article 1935. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lyu, J., Lin, Q., Fang, Z., Xu, Z. and Liu, Z. (2022) Complex Impacts of Gallstone Disease on Metabolic Syndrome and Nonalcoholic Fatty Liver Disease. Frontiers in Endocrinology, 13, Article 1032557. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Radun, R. and Trauner, M. (2021) Role of FXR in Bile Acid and Metabolic Homeostasis in NASH: Pathogenetic Concepts and Therapeutic Opportunities. Seminars in Liver Disease, 41, 461-475. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Molinaro, A. and Marschall, H. (2022) Bile Acid Metabolism and FXR-Mediated Effects in Human Cholestatic Liver Disorders. Biochemical Society Transactions, 50, 361-373. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xu, F., Yu, Z., Liu, Y., Du, T., Yu, L., Tian, F., et al. (2023) A High-Fat, High-Cholesterol Diet Promotes Intestinal Inflammation by Exacerbating Gut Microbiome Dysbiosis and Bile Acid Disorders in Cholecystectomy. Nutrients, 15, Article 3829. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Jiao, T., Ma, Y., Guo, X., Ye, Y. and Xie, C. (2022) Bile Acid and Receptors: Biology and Drug Discovery for Nonalcoholic Fatty Liver Disease. Acta Pharmacologica Sinica, 43, 1103-1119. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Park, S., Zhang, T., Yue, Y. and Wu, X. (2022) Effects of Bile Acid Modulation by Dietary Fat, Cholecystectomy, and Bile Acid Sequestrant on Energy, Glucose, and Lipid Metabolism and Gut Microbiota in Mice. International Journal of Molecular Sciences, 23, Article 5935. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kumar, T., Pandey, R. and Chauhan, N.S. (2020) Hypoxia Inducible Factor-1α: The Curator of Gut Homeostasis. Frontiers in Cellular and Infection Microbiology, 10, Article 227. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bertolini, A., Fiorotto, R. and Strazzabosco, M. (2022) Bile Acids and Their Receptors: Modulators and Therapeutic Targets in Liver Inflammation. Seminars in Immunopathology, 44, 547-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ren, X., Xu, J., Zhang, Y., Chen, G., Zhang, Y., Huang, Q., et al. (2020) Bacterial Alterations in Post-Cholecystectomy Patients Are Associated with Colorectal Cancer. Frontiers in Oncology, 10, Article 1418. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Frost, F., Kacprowski, T., Rühlemann, M., Weiss, S., Bang, C., Franke, A., et al. (2021) Carrying Asymptomatic Gallstones Is Not Associated with Changes in Intestinal Microbiota Composition and Diversity but Cholecystectomy with Significant Dysbiosis. Scientific Reports, 11, Article No. 6677. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Henry, Z., Meadows, V. and Guo, G.L. (2023) FXR and NASH: An Avenue for Tissue-Specific Regulation. Hepatology Communications, 7, e0127. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhou, W. and Anakk, S. (2022) Enterohepatic and Non-Canonical Roles of Farnesoid X Receptor in Controlling Lipid and Glucose Metabolism. Molecular and Cellular Endocrinology, 549, Article ID: 111616. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ramos Pittol, J.M., Milona, A., Morris, I., Willemsen, E.C.L., van der Veen, S.W., Kalkhoven, E., et al. (2020) FXR Isoforms Control Different Metabolic Functions in Liver Cells via Binding to Specific DNA Motifs. Gastroenterology, 159, 1853-1865.e10. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, Y., Cao, C., Zhou, Y., Nie, Y., Cao, J. and Zhou, Y. (2020) The Roles and Interaction of FXR and Ppars in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Arab Journal of Gastroenterology, 21, 162-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ijssennagger, N., van Rooijen, K.S., Magnúsdóttir, S., Ramos Pittol, J.M., Willemsen, E.C.L., de Zoete, M.R., et al. (2021) Ablation of Liver FXR Results in an Increased Colonic Mucus Barrier in Mice. JHEP Reports, 3, Article ID: 100344. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kumari, A., Pal Pathak, D. and Asthana, S. (2020) Bile Acids Mediated Potential Functional Interaction between FXR and FATP5 in the Regulation of Lipid Metabolism. International Journal of Biological Sciences, 16, 2308-2322. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, X., Wang, J., Li, M., Qiu, J., Li, X., Qi, L., et al. (2023) Farnesoid X Receptor Is an Important Target for the Treatment of Disorders of Bile Acid and Fatty Acid Metabolism in Mice with Nonalcoholic Fatty Liver Disease Combined with Cholestasis. Journal of Gastroenterology and Hepatology, 38, 1438-1446. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, Z., Yuan, H., Chu, H. and Yang, L. (2023) The Crosstalk between Gut Microbiota and Bile Acids Promotes the Development of Non-Alcoholic Fatty Liver Disease. Microorganisms, 11, Article 2059. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Panzitt, K., Zollner, G., Marschall, H. and Wagner, M. (2022) Recent Advances on FXR-Targeting Therapeutics. Molecular and Cellular Endocrinology, 552, Article ID: 111678. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Farr, S., Stankovic, B., Hoffman, S., Masoudpoor, H., Baker, C., Taher, J., et al. (2020) Bile Acid Treatment and FXR Agonism Lower Postprandial Lipemia in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G682-G693. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Mori, H., Svegliati Baroni, G., Marzioni, M., Di Nicola, F., Santori, P., Maroni, L., et al. (2022) Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota. Metabolites, 12, Article 647. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Deng, W., Fan, W., Tang, T., Wan, H., Zhao, S., Tan, Y., et al. (2022) Farnesoid X Receptor Deficiency Induces Hepatic Lipid and Glucose Metabolism Disorder via Regulation of Pyruvate Dehydrogenase Kinase 4. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3589525. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Xue, R., Su, L., Lai, S., Wang, Y., Zhao, D., Fan, J., et al. (2021) Bile Acid Receptors and the Gut-Liver Axis in Nonalcoholic Fatty Liver Disease. Cells, 10, Article 2806. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Clifford, B.L., Sedgeman, L.R., Williams, K.J., Morand, P., Cheng, A., Jarrett, K.E., et al. (2021) FXR Activation Protects against NAFLD via Bile-Acid-Dependent Reductions in Lipid Absorption. Cell Metabolism, 33, 1671-1684.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yang, J., van Dijk, T.H., Koehorst, M., Havinga, R., de Boer, J.F., Kuipers, F., et al. (2023) Intestinal Farnesoid X Receptor Modulates Duodenal Surface Area but Does Not Control Glucose Absorption in Mice. International Journal of Molecular Sciences, 24, Article 4132. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhao, L., Xuan, Z., Song, W., Zhang, S., Li, Z., Song, G., et al. (2020) A Novel Role for Farnesoid X Receptor in the Bile Acid‐mediated Intestinal Glucose Homeostasis. Journal of Cellular and Molecular Medicine, 24, 12848-12861. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Di Ciaula, A., Garruti, G., Wang, D.Q.-H. and Portincasa, P. (2018) Cholecystectomy and Risk of Metabolic Syndrome. European Journal of Internal Medicine, 53, 3-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Qi, L., Tian, Y. and Chen, Y. (2019) Gall Bladder: The Metabolic Orchestrator. Diabetes/Metabolism Research and Reviews, 35, e3140. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Garruti, G., Wang, D.Q., Di Ciaula, A. and Portincasa, P. (2018) Cholecystectomy: A Way Forward and Back to Metabolic Syndrome? Laboratory Investigation, 98, 4-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Xu, F., Chen, R., Zhang, C., Wang, H., Ding, Z., Yu, L., et al. (2023) Cholecystectomy Significantly Alters Gut Microbiota Homeostasis and Metabolic Profiles: A Cross-Sectional Study. Nutrients, 15, Article 4399. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Nian, F., Wu, L., Xia, Q., Tian, P., Ding, C. and Lu, X. (2023) Akkermansia muciniphila and Bifidobacterium bifidum Prevent NAFLD by Regulating FXR Expression and Gut Microbiota. Journal of Clinical and Translational Hepatology, 11, 763-776. [Google Scholar] [CrossRef] [PubMed]
|