|
[1]
|
American Diabetes Association (2008) Economic Costs of Diabetes in the U.S. in 2007. Diabetes Care, 31, 596-615. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Boulton, A.J., Vileikyte, L., Ragnarson-Tennvall, G. and Apelqvist, J. (2005) The Global Burden of Diabetic Foot Disease. The Lancet, 366, 1719-1724. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gregg, E.W., Li, Y., Wang, J., Rios Burrows, N., Ali, M.K., Rolka, D., et al. (2014) Changes in Diabetes-Related Complications in the United States, 1990-2010. New England Journal of Medicine, 370, 1514-1523. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ahmed, A.S. and Antonsen, E.L. (2016) Immune and Vascular Dysfunction in Diabetic Wound Healing. Journal of Wound Care, 25, S35-S46. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Falanga, V. (2005) Wound Healing and Its Impairment in the Diabetic Foot. The Lancet, 366, 1736-1743. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Davis, F.M., Kimball, A., Boniakowski, A. and Gallagher, K. (2018) Dysfunctional Wound Healing in Diabetic Foot Ulcers: New Crossroads. Current Diabetes Reports, 18, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Pitocco, D., Spanu, T., Di Leo, M., et al. (2019) Diabetic Foot Infections: A Comprehensive Overview. European Review for Medical and Pharmacological Sciences, 23, 26-37.
|
|
[8]
|
Gherman, D., Dumitrescu, C.I., Ciocan, A. and Melincovici, C.S. (2018) Histopathological Changes in Major Amputations Due to Diabetic Foot—A Review. Romanian Journal of Morphology and Embryology, 59, 699-702.
|
|
[9]
|
Armstrong, D.G., Swerdlow, M.A., Armstrong, A.A., Conte, M.S., Padula, W.V. and Bus, S.A. (2020) Five Year Mortality and Direct Costs of Care for People with Diabetic Foot Complications Are Comparable to Cancer. Journal of Foot and Ankle Research, 13, 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, Y., Zhu, T., He, F., Chen, A.C., Yang, H. and Zhu, X. (2021) Identification of Key Genes and Pathways in Osteoarthritis via Bioinformatic Tools: An Updated Analysis. CARTILAGE, 13, 1457S-1464S. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Canzoneri, R., Lacunza, E. and Abba, M.C. (2019) Genomics and Bioinformatics as Pillars of Precision Medicine in Oncology. Medicina, 79, 587-592.
|
|
[12]
|
Merrick, B.A., London, R.E., Bushel, P.R., Grissom, S.F. and Paules, R.S. (2011) Platforms for Biomarker Analysis Using High-Throughput Approaches in Genomics, Transcriptomics, Proteomics, Metabolomics, and Bioinformatics. IARC Scientific Publications, 163, 121-142.
|
|
[13]
|
Nie, X., Zhao, J., Ling, H., Deng, Y., Li, X. and He, Y. (2020) Exploring microRNAs in Diabetic Chronic Cutaneous Ulcers: Regulatory Mechanisms and Therapeutic Potential. British Journal of Pharmacology, 177, 4077-4095. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Skyler, J.S., Bakris, G.L., Bonifacio, E., Darsow, T., Eckel, R.H., Groop, L., et al. (2016) Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes, 66, 241-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Petrachkova, T., Wortinger, L.A., Bard, A.J., Singh, J., Warga, R.M. and Kane, D.A. (2019) Lack of Cyclin B1 in Zebrafish Causes Lengthening of G2 and M Phases. Developmental Biology, 451, 167-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pines, J. (1993) Cyclins and Cyclin-Dependent Kinases: Take Your Partners. Trends in Biochemical Sciences, 18, 195-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Malumbres, M. and Barbacid, M. (2005) Mammalian Cyclin-Dependent Kinases. Trends in Biochemical Sciences, 30, 630-641. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, H., Zhang, X., Li, X., Meng, W., Bai, Z., Rui, S., et al. (2018) Effect of CCNB1 Silencing on Cell Cycle, Senescence, and Apoptosis through the p53 Signaling Pathway in Pancreatic Cancer. Journal of Cellular Physiology, 234, 619-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Oropeza-Valdez, J.J., Hernandez, J., Jaime-Sánchez, E., López-Ramos, E., Lara-Ramírez, E.E., Hernández, Y.L., et al. (2023) Transcriptome Analysis Identifies Oxidative Stress Injury Biomarkers for Diabetic Nephropathy. Archives of Medical Research, 54, 17-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jin, Y. and Wang, H. (2023) Identification of Hub Genes Affecting Gestational Diabetes Mellitus Based on GEO Database. Biotechnology and Genetic Engineering Reviews. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lin, Y., Wang, F., Cheng, L., Fang, Z. and Shen, G. (2021) Identification of Key Biomarkers and Immune Infiltration in Sciatic Nerve of Diabetic Neuropathy BKS-db/db Mice by Bioinformatics Analysis. Frontiers in Pharmacology, 12, Article 682005. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhu, H.-J., Fan, M. and Gao, W. (2021) Identification of Potential Hub Genes Associated with Skin Wound Healing Based on Time Course Bioinformatic Analyses. BMC Surgery, 21, Article No. 303. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Niméus-Malmström, E., Koliadi, A., Ahlin, C., Holmqvist, M., Holmberg, L., Amini, R.-M., et al. (2010) Cyclin B1 Is a Prognostic Proliferation Marker with a High Reproducibility in a Population-Based Lymph Node Negative Breast Cancer Cohort. International Journal of Cancer, 127, 961-967. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bond, J., Roberts, E., Mochida, G.H., Hampshire, D.J., Scott, S., Askham, J.M., et al. (2002) ASPM Is a Major Determinant of Cerebral Cortical Size. Nature Genetics, 32, 316-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bikeye, S.N., Colin, C., Marie, Y., Vampouille, R., Ravassard, P., Rousseau, A., et al. (2010) ASPM-Associated Stem Cell Proliferation Is Involved in Malignant Progression of Gliomas and Constitutes an Attractive Therapeutic Target. Cancer Cell International, 10, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Buchman, J.J., Durak, O. and Tsai, L. (2011) ASPM Regulates Wnt Signaling Pathway Activity in the Developing Brain. Genes & Development, 25, 1909-1914. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Pierzak-Sominka, J., Skonieczna-Żydecka, K., Rudnicki, J. and Karakiewicz, B. (2016) The Impact of rs3762271 and rs930557 Polymorphisms of ASPM and MCPH1 Genes on the Anatomy and Function of the Brain. Biological Research for Nursing, 18, 386-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhou, J.W., Wang, H., Sun, W., Han, N.N. and Chen, L. (2020) ASPM Is a Predictor of Overall Survival and Has Therapeutic Potential in Endometrial Cancer. American Journal of Translational Research, 12, 1942-1953.
|
|
[29]
|
Priya, A., Dashti, M., Thanaraj, T.A., Irshad, M., Singh, V., Tandon, R., et al. (2024) Identification of Potential Regulatory Mechanisms and Therapeutic Targets for Lung Cancer. Journal of Biomolecular Structure and Dynamics. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Horvath, S., Zhang, B., Carlson, M., Lu, K.V., Zhu, S., Felciano, R.M., et al. (2006) Analysis of Oncogenic Signaling Networks in Glioblastoma Identifies ASPM as a Molecular Target. Proceedings of the National Academy of Sciences, 103, 17402-17407. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wu, J., He, Z., Zhu, Y., Jiang, C., Deng, Y. and Wei, B. (2021) ASPM Predicts Poor Clinical Outcome and Promotes Tumorigenesis for Diffuse Large B-Cell Lymphoma. Current Cancer Drug Targets, 21, 80-89. [Google Scholar] [CrossRef] [PubMed]
|