|
[1]
|
蔡之升(2013). 数量表征与注意机制关系的研究. 硕士学位论文, 昆明: 云南师范大学.
|
|
[2]
|
尹月阳(2019). 符号数量系统与近似数量系统之间的双向映射机制. 博士学位论文, 长春: 吉林大学.
|
|
[3]
|
Agrillo, C., Petrazzini, M. E. M., & Bisazza, A. (2016). Number vs. Continuousquantities in Lower Vertebrates. In A. Henik, (Ed.), Continuous Issues in Numerical Cognition (pp. 149-174). Academic Press.[CrossRef]
|
|
[4]
|
Anobile, G., Turi, M., Cicchini, G. M., & Burr, D. C. (2012). The Effects of Cross-Sensory Attentional Demand on Subitizing and on Mapping Number Onto Space. Vision Research, 74, 102-109.[CrossRef] [PubMed]
|
|
[5]
|
Cantlon, J. F. (2012). Math, Monkeys, and the Developing Brain. Proceedings of the National Academy of Sciences of the United States of America, 109, 10725-10732.[CrossRef] [PubMed]
|
|
[6]
|
Cantlon, J. F., Cordes, S., Libertus, M. E., & Brannon, E. M. (2009). Comment on “Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures“. Science, 323, 38-38.[CrossRef] [PubMed]
|
|
[7]
|
De Smedt, B., Noël, M., Gilmore, C., & Ansari, D. (2013). How Do Symbolic and Non-Symbolic Numerical Magnitude Processing Skills Relate to Individual Differences in Children’s Mathematical Skills? A Review of Evidence from Brain and Behavior. Trends in Neuroscience and Education, 2, 48-55.[CrossRef]
|
|
[8]
|
Dietrich, J. F., Huber, S., & Nuerk, H. (2015). Methodological Aspects to Be Considered When Measuring the Approximate Number System (ANS)—A Research Review. Frontiers in Psychology, 6, Article 295.[CrossRef] [PubMed]
|
|
[9]
|
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core Systems of Number. Trends in Cognitive Sciences, 8, 307-314.[CrossRef] [PubMed]
|
|
[10]
|
Franconeri, S. L., Jonathan, S. V., & Scimeca, J. M. (2010). Tracking Multiple Objects Is Limited Only by Object Spacing, Not by Speed, Time, or Capacity. Psychological Science, 21, 920-925.[CrossRef] [PubMed]
|
|
[11]
|
Gallistel, C. R., & Gelman, R. (2000). Non-Verbal Numerical Cognition: From Reals to Integers. Trends in Cognitive Sciences, 4, 59-65.[CrossRef] [PubMed]
|
|
[12]
|
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic Arithmetic Knowledge without Instruction. Nature, 447, 589-591.[CrossRef] [PubMed]
|
|
[13]
|
Gross, H. J., Pahl, M., Si, A., Zhu, H., Tautz, J., & Zhang, S. (2009). Number-Based Visual Generalisation in the Honeybee. PLOS ONE, 4, e4263.[CrossRef] [PubMed]
|
|
[14]
|
Halberda, J., & Feigenson, L. (2008). Developmental Change in the Acuity of the “Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-Year-Olds and Adults. Developmental Psychology, 44, 1457-1465.[CrossRef] [PubMed]
|
|
[15]
|
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number Sense across the Lifespan as Revealed by a Massive Internet-Based Sample. Proceedings of the National Academy of Sciences of the United States of America, 109, 11116-11120.[CrossRef] [PubMed]
|
|
[16]
|
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual Differences in Non-Verbal Number Acuity Correlate with Maths Achievement. Nature, 455, 665-668.[CrossRef] [PubMed]
|
|
[17]
|
Holloway, I. D., & Ansari, D. (2009). Mapping Numerical Magnitudes onto Symbols: The Numerical Distance Effect and Individual Differences in Children’s Mathematics Achievement. Journal of Experimental Child Psychology, 103, 17-29.[CrossRef] [PubMed]
|
|
[18]
|
Hyde, D. C. (2011). Two Systems of Non-Symbolic Numerical Cognition. Frontiers in Human Neuroscience, 5, Article 150.[CrossRef] [PubMed]
|
|
[19]
|
Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief Non-Symbolic, Approximate Number Practice Enhances Subsequent Exact Symbolic Arithmetic in Children. Cognition, 131, 92-107.[CrossRef] [PubMed]
|
|
[20]
|
Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-Verbal Number Acuity Correlates with Symbolic Mathematics Achievement: But Only in Children. Psychonomic Bulletin & Review, 18, 1222-1229.[CrossRef] [PubMed]
|
|
[21]
|
Keller, L., & Libertus, M. (2015). Inhibitory Control May Not Explain the Link between Approximation and Math Abilities in Kindergarteners from Middle Class Families. Frontiers in Psychology, 6, Article 685.[CrossRef] [PubMed]
|
|
[22]
|
Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early Numerical Development and the Role of Non-Symbolic and Symbolic Skills. Learning and Instruction, 25, 95-103.[CrossRef]
|
|
[23]
|
Laski, E. V., & Siegler, R. S. (2007). Is 27 a Big Number? Correlational and Causal Connections among Numerical Categorization, Number Line Estimation, and Numerical Magnitude Comparison. Child Development, 78, 1723-1743.[CrossRef] [PubMed]
|
|
[24]
|
Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool Acuity of the Approximate Number System Correlates with School Math Ability. Developmental Science, 14, 1292-1300.[CrossRef] [PubMed]
|
|
[25]
|
Libertus, M. E., Feigenson, L., Halberda, J., & Landau, B. (2014). Understanding the Mapping between Numerical Approximation and Number Words: Evidence from Williams Syndrome and Typical Development. Developmental Science, 17, 905-919.[CrossRef] [PubMed]
|
|
[26]
|
Lyons, I. M., & Beilock, S. L. (2011). Numerical Ordering Ability Mediates the Relation between Number-Sense and Arithmetic Competence. Cognition, 121, 256-261.[CrossRef] [PubMed]
|
|
[27]
|
Lyons, I. M., Ansari, D., & Beilock, S. L. (2014). Qualitatively Different Coding of Symbolic and Nonsymbolic Numbers in the Human Brain. Human Brain Mapping, 36, 475-488.[CrossRef] [PubMed]
|
|
[28]
|
Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired Acuity of the Approximate Number System Underlies Mathematical Learning Disability (Dyscalculia). Child Development, 82, 1224-1237.[CrossRef] [PubMed]
|
|
[29]
|
Mock, J., Huber, S., Bloechle, J., Dietrich, J. F., Bahnmueller, J., Rennig, J. et al. (2018). Magnitude Processing of Symbolic and Non-Symbolic Proportions: An fMRI Study. Behavioral and Brain Functions, 14, Article 9.[CrossRef] [PubMed]
|
|
[30]
|
Moeller, K., Willmes, K., & Klein, E. (2015). A Review on Functional and Structural Brain Connectivity in Numerical Cognition. Frontiers in Human Neuroscience, 9, Article 227.[CrossRef] [PubMed]
|
|
[31]
|
Mou, Y., & Van Marle, K. (2014). Two Core Systems of Numerical Representation in Infants. Developmental Review, 34, 1-25.[CrossRef]
|
|
[32]
|
Nieder, A. (2016). The Neuronal Code for Number. Nature Reviews Neuroscience, 17, 366-382.[CrossRef] [PubMed]
|
|
[33]
|
Nieder, A., & Dehaene, S. (2009). Representation of Number in the Brain. Annual Review of Neuroscience, 32, 185-208.[CrossRef] [PubMed]
|
|
[34]
|
Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental Change in the Acuity of Approximate Number and Area Representations. Developmental Psychology, 49, 1103-1112.[CrossRef] [PubMed]
|
|
[35]
|
Park, J., & Brannon, E. M. (2013). Training the Approximate Number System Improves Math Proficiency. Psychological Science, 24, 2013-2019.[CrossRef] [PubMed]
|
|
[36]
|
Paterson, S. J., Girelli, L., Butterworth, B., & Karmiloff-Smith, A. (2005). Are Numerical Impairments Syndrome Specific? Evidence from Williams Syndrome and Down’s Syndrome. Journal of Child Psychology and Psychiatry, 47, 190-204.[CrossRef] [PubMed]
|
|
[37]
|
Peake, C., & Rodríguez, C. (2020). Bidirectional Relation of Non-Symbolic and Symbolic Numerical Systems in First Year of Kindergarten: The Mediating Role of Ordinality during Number Learning.[CrossRef]
|
|
[38]
|
Piazza, J. R., Charles, S. T., Sliwinski, M. J., Mogle, J., & Almeida, D. M. (2012). Affective Reactivity to Daily Stressors and Long-Term Risk of Reporting a Chronic Physical Health Condition. Annals of Behavioral Medicine, 45, 110-120.[CrossRef] [PubMed]
|
|
[39]
|
Piazza, M., & Izard, V. (2009). How Humans Count: Numerosity and the Parietal Cortex. The Neuroscientist, 15, 261-273.[CrossRef] [PubMed]
|
|
[40]
|
Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking Multiple Independent Targets: Evidence for a Parallel Tracking Mechanism. Spatial Vision, 3, 179-197.[CrossRef] [PubMed]
|
|
[41]
|
Revkin, S. K., Piazza, M., Izard, V., Zamarian, L., Karner, E., & Delazer, M. (2008). Verbal Numerosity Estimation Deficit in the Context of Spared Semantic Representation of Numbers: A Neuropsychological Study of a Patient with Frontal Lesions. Neuropsychologia, 46, 2463-2475.[CrossRef] [PubMed]
|
|
[42]
|
Reynvoet, B., & Sasanguie, D. (2016). The Symbol Grounding Problem Revisited: A Thorough Evaluation of the ANS Mapping Account and the Proposal of an Alternative Account Based on Symbol-Symbol Associations. Frontiers in Psychology, 7, Article 1581.[CrossRef] [PubMed]
|
|
[43]
|
Rubinsten, O., Korem, N., Levin, N., & Furman, T. (2020). Frequency-based Dissociation of Symbolic and Nonsymbolic Numerical Processing during Numerical Comparison. Journal of Cognitive Neuroscience, 32, 762-782.[CrossRef] [PubMed]
|
|
[44]
|
Rugani, R., Vallortigara, G., & Regolin, L. (2014). From Small to Large: Numerical Discrimination by Young Domestic Chicks (Gallus gallus). Journal of Comparative Psychology, 128, 163-171.[CrossRef] [PubMed]
|
|
[45]
|
Sasanguie, D., & Reynvoet, B. (2014). The Relation between Symbolic Number Processing and Math Achievement: Opening the Black Box. In Annual Meeting of the Psychonomic Society, Long Beach, California, 20 November-23 November 2014.
|
|
[46]
|
Sasanguie, D., Lyons, I. M., De Smedt, B., & Reynvoet, B. (2017). Unpacking Symbolic Number Comparison and Its Relation with Arithmetic in Adults. Cognition, 165, 26-38.[CrossRef] [PubMed]
|
|
[47]
|
Schneider, M., & Preckel, F. (2017). Variables Associated with Achievement in Higher Education: A Systematic Review of Meta-Analyses. Psychological Bulletin, 143, 565-600.[CrossRef] [PubMed]
|
|
[48]
|
Starkey, G. S., & McCandliss, B. D. (2014). The Emergence of “Groupitizing” in Children’s Numerical Cognition. Journal of Experimental Child Psychology, 126, 120-137.[CrossRef] [PubMed]
|
|
[49]
|
Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Infants Show Ratio‐dependent Number Discrimination Regardless of Set Size. Infancy, 18, 927-941.[CrossRef] [PubMed]
|
|
[50]
|
Stoianov, I., & Zorzi, M. (2012). Emergence of a ‘Visual Number Sense’ in Hierarchical Generative Models. Nature Neuroscience, 15, 194-196.[CrossRef] [PubMed]
|
|
[51]
|
Van Marle, K., Chu, F. W., Mou, Y., Seok, J. H., Rouder, J., & Geary, D. C. (2016). Attaching Meaning to the Number Words: Contributions of the Object Tracking and Approximate Number Systems. Developmental Science, 21, e12495.[CrossRef] [PubMed]
|
|
[52]
|
Wood, J. N., Hauser, M. D., Glynn, D. D., & Barner, D. (2008). Free-Ranging Rhesus Monkeys Spontaneously Individuate and Enumerate Small Numbers of Non-Solid Portions. Cognition, 106, 207-221.
|