|
[1]
|
Gribble, G.W. (2015) Biological Activity of Recently Discovered Halogenated Marine Natural Products. Marine Drugs, 13, 4044-4136. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Gribble, G.W. (2023) Naturally Occurring Organohalogen Compounds—A Comprehensive Review. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, J.K. and Dirsch, V.M., Eds., Naturally Occurring Organohalogen Compounds. Progress in the Chemistry of Organic Natural Products, Vol. 121, Springer, 1-546.
|
|
[3]
|
Carvalho, M.F. and Oliveira, R.S. (2017) Natural Production of Fluorinated Compounds and Biotechnological Prospects of the Fluorinase Enzyme. Critical Reviews in Biotechnology, 37, 880-897. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fournier, J.-B., Rebuffet, E., Delage, L., Grijol, R., Meslet-Cladière, L., Rzonca, J., et al. (2014) The Vanadium Iodoperoxidase from the Marine Flavobacteriaceae Species Zobellia galactanivorans Reveals Novel Molecular and Evolutionary Features of Halide Specificity in the Vanadium Haloperoxidase Enzyme Family. Applied and Environmental Microbiology, 80, 7561-7573. [Google Scholar] [CrossRef]
|
|
[5]
|
Büchler, J., Papadopoulou, A. and Buller, R. (2019) Recent Advances in Flavin-Dependent Halogenase Biocatalysis: Sourcing, Engineering, and Application. Catalysts, 9, Article 1030. [Google Scholar] [CrossRef]
|
|
[6]
|
Fisher, B.F., Snodgrass, H.M., Jones, K.A., Andorfer, M.C. and Lewis, J.C. (2019) Site-Selective C-H Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling. ACS Central Science, 5, 1844-1856. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Gan, J., Yates, S.R., Ohr, H.D. and Sims, J.J. (1998) Production of Methyl Bromide by Terrestrial Higher Plants. Geophysical Research Letters, 25, 3595-3598. [Google Scholar] [CrossRef]
|
|
[8]
|
Leri, A.C. and Myneni, S.C.B. (2012) Natural Organobromine in Terrestrial Ecosystems. Geochimica et Cosmochimica Acta, 77, 1-10. [Google Scholar] [CrossRef]
|
|
[9]
|
Starr, M.P. and Stephens, W.L. (1964) Pigmentation and Taxonomy of the Genus Xanthomonas. Journal of Bacteriology, 87, 293-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
He, Y.-W., Cao, X.-Q. and Poplawsky, A.R. (2020) Chemical Structure, Biological Roles, Biosynthesis and Regulation of the Yellow Xanthomonadin Pigments in the Phytopathogenic Genus Xanthomonas. Molecular Plant-Microbe Interactions, 33, 705-714. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Beekman, A.M., Wossa, S.W., Kevo, O., Ma, P. and Barrow, R.A. (2015) Discovery and Synthesis of Boletopsins 13 and 14, Brominated Fungal Metabolites of Terrestrial Origin. Journal of Natural Products, 78, 2133-2135. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Niemann, H., Marmann, A., Lin, W. and Proksch, P. (2015) Sponge Derived Bromotyrosines: Structural Diversity through Natural Combinatorial Chemistry. Natural Product Communications, 10, 219-231. [Google Scholar] [CrossRef]
|
|
[13]
|
Thoms, C., Ebel, R. and Proksch, P. (2006) Activated Chemical Defense in Aplysina Sponges Revisited. Journal of Chemical Ecology, 32, 97-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Horna-Gray, I., Lopez, N.A., Ahn, Y., Saks, B., Girer, N., Hentschel, U., et al. (2022) Desulfoluna spp. Form a Cosmopolitan Group of Anaerobic Dehalogenating Bacteria Widely Distributed in Marine Sponges. FEMS Microbiology Ecology, 98, Article fiac063. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Paul, N., de Nys, R. and Steinberg, P. (2006) Chemical Defence against Bacteria in the Red Alga Asparagopsis armata: Linking Structure with Function. Marine Ecology Progress Series, 306, 87-101. [Google Scholar] [CrossRef]
|
|
[16]
|
Thapa, H.R., Lin, Z., Yi, D., Smith, J.E., Schmidt, E.W. and Agarwal, V. (2020) Genetic and Biochemical Reconstitution of Bromoform Biosynthesis in Asparagopsis Lends Insights into Seaweed Reactive Oxygen Species Enzymology. ACS Chemical Biology, 15, 1662-1670. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gribble, G.W. (2000) The Natural Production of Organobromine Compounds. Environmental Science and Pollution Research, 7, 37-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mitra, S.N., Slungaard, A. and Hazen, S.L. (2000) Role of Eosinophil Peroxidase in the Origins of Protein Oxidation in Asthma. Redox Report, 5, 215-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wu, W., Samoszuk, M.K., Comhair, S.A.A., Thomassen, M.J., Farver, C.F., Dweik, R.A., et al. (2000) Eosinophils Generate Brominating Oxidants in Allergen-Induced Asthma. Journal of Clinical Investigation, 105, 1455-1463. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Park, H.B., Lam, Y.C., Gaffney, J.P., Weaver, J.C., Krivoshik, S.R., Hamchand, R., et al. (2019) Bright Green Biofluorescence in Sharks Derives from Bromo-Kynurenine Metabolism. iScience, 19, 1291-1336. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
McCall, A.S., Cummings, C.F., Bhave, G., Vanacore, R., Page-McCaw, A. and Hudson, B.G. (2014) Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture. Cell, 157, 1380-1392. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yanagisawa, I. and Yoshikawa, H. (1973) A Bromine Compound Isolated from Human Cerebrospinal Fluid. Biochimica et Biophysica Acta (BBA)-General Subjects, 329, 283-294. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Pospíšil, P. (2016) Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. Frontiers in Plant Science, 7, Article 1950. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Thapa, H.R. and Agarwal, V. (2021) Obligate Brominating Enzymes Underlie Bromoform Production by Marine Cyanobacteria. Journal of Phycology, 57, 1131-1139. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Salawitch, R.J. (2006) Biogenic Bromine. Nature, 439, 275-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Breinlinger, S., Phillips, T.J., Haram, B.N., Mareš, J., Martínez Yerena, J.A., Hrouzek, P., et al. (2021) Hunting the Eagle Killer: A Cyanobacterial Neurotoxin Causes Vacuolar Myelinopathy. Science, 371, eaax9050. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Agarwal, V., El Gamal, A.A., Yamanaka, K., Poth, D., Kersten, R.D., Schorn, M., et al. (2014) Biosynthesis of Polybrominated Aromatic Organic Compounds by Marine Bacteria. Nature Chemical Biology, 10, 640-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Teuten, E.L., Xu, L. and Reddy, C.M. (2005) Two Abundant Bioaccumulated Halogenated Compounds Are Natural Products. Science, 307, 917-920. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Alonso, M.B., Maruya, K.A., Dodder, N.G., Lailson-Brito, J., Azevedo, A., Santos-Neto, E., et al. (2017) Nontargeted Screening of Halogenated Organic Compounds in Bottlenose Dolphins (Tursiops truncatus) from Rio de Janeiro, Brazil. Environmental Science & Technology, 51, 1176-1185. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Losada, S., Roach, A., Roosens, L., Santos, F.J., Galceran, M.T., Vetter, W., et al. (2009) Biomagnification of Anthropogenic and Naturally-Produced Organobrominated Compounds in a Marine Food Web from Sydney Harbour, Australia. Environment International, 35, 1142-1149. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhao, T., Tang, X., Li, D., Zhao, J., Zhou, R., Shu, F., et al. (2022) Prenatal Exposure to Environmentally Relevant Levels of PBDE-99 Leads to Testicular Dysgenesis with Steroidogenesis Disorders. Journal of Hazardous Materials, 424, Article 127547. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wu, Z., Han, W., Yang, X., Li, Y. and Wang, Y. (2019) The Occurrence of Polybrominated Diphenyl Ether (PBDE) Contamination in Soil, Water/Sediment, and Air. Environmental Science and Pollution Research, 26, 23219-23241. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
McDonald, T.A. (2005) Polybrominated Diphenylether Levels among United States Residents: Daily Intake and Risk of Harm to the Developing Brain and Reproductive Organs. Integrated Environmental Assessment and Management, 1, 343-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chokwe, T.B., Magubane, M.N., Abafe, O.A., Okonkwo, J.O. and Sibiya, I.V. (2019) Levels, Distributions, and Ecological Risk Assessments of Polybrominated Diphenyl Ethers and Alternative Flame Retardants in River Sediments from Vaal River, South Africa. Environmental Science and Pollution Research, 26, 7156-7163. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kim, K., Hyun, Y., Hewage, S.R., Piao, M., Kang, K., Kang, H., et al. (2017) 3-Bromo-4,5-Dihydroxybenzaldehyde Enhances the Level of Reduced Glutathione via the Nrf2-Mediated Pathway in Human Keratinocytes. Marine Drugs, 15, Article 291. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Qin, S.-G., Tian, H.-Y., Wei, J., Han, Z.-H., Zhang, M.-J., et al. (2018) 3-Bromo-4,5-Dihydroxybenzaldehyde Protects against Myocardial Ischemia and Reperfusion Injury through the Akt-PGC1α-Sirt3 Pathway. Frontiers in Pharmacology, 9, Article 722. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kang, N., Han, S., Kang, H., Ko, G., et al. (2017) Anti-Inflammatory Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde, a Component of Polysiphonia morrowii, in vivo and in vitro. Toxicological Research, 33, 325-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wang, Q., Ou, K., Zeng, C. and Fang, Y. (2022) 5-Bromo-3,4-Dihydroxybenzaldehyde Attenuates Endothelial Cells Injury from High Glucose-Induced Damage. Biomedicine & Pharmacotherapy, 155, Article 113793. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kang, J.-I, Choi, Y.K., Han, S.-C., Nam, H., Lee, G., Kang, J.-H., et al. (2022) 5-Bromo-3,4-Dihydroxybenzaldehyde Promotes Hair Growth through Activation of Wnt/β-catenin and Autophagy Pathways and Inhibition of TGF-β Pathways in Dermal Papilla Cells. Molecules, 27, Article 2176. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liu, M., Hansen, P.E. and Lin, X. (2011) Bromophenols in Marine Algae and Their Bioactivities. Marine Drugs, 9, 1273-1292. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Arai, M., Shin, D., Kamiya, K., Ishida, R., Setiawan, A., Kotoku, N., et al. (2016) Marine Spongean Polybrominated Diphenyl Ethers, Selective Growth Inhibitors against the Cancer Cells Adapted to Glucose Starvation, Inhibits Mitochondrial Complex II. Journal of Natural Medicines, 71, 44-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hofer, S., Hartmann, A., Orfanoudaki, M., Nguyen Ngoc, H., Nagl, M., Karsten, U., et al. (2019) Development and Validation of an HPLC Method for the Quantitative Analysis of Bromophenolic Compounds in the Red Alga Vertebrata lanosa. Marine Drugs, 17, Article 675. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Dong, H., Liu, M., Wang, L., Liu, Y., et al. (2021) Bromophenol Bis (2,3,6-Tribromo-4,5-Dihydroxybenzyl) Ether Protects HaCaT Skin Cells from Oxidative Damage via Nrf2-Mediated Pathways. Antioxidants, 10, Article 1436. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sun, J., Wu, J., An, B., de Voogd, N.J., Cheng, W. and Lin, W. (2018) Bromopyrrole Alkaloids with the Inhibitory Effects against the Biofilm Formation of Gram Negative Bacteria. Marine Drugs, 16, Article 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kovalerchik, D., Singh, R.P., Schlesinger, P., Mahajni, A., Shefer, S., Fridman, M., et al. (2020) Bromopyrrole Alkaloids of the Sponge Agelas oroides Collected Near the Israeli Mediterranean Coastline. Journal of Natural Products, 83, 374-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Mahamed, S., Motal, R., Govender, T., Dlamini, N., Khuboni, K., Hadeb, Z., et al. (2023) A Concise Review on Marine Bromopyrrole Alkaloids as Anticancer Agents. Bioorganic & Medicinal Chemistry Letters, 80, Article 129102. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G. and Prinsep, M.R. (2016) Marine Natural Products. Natural Product Reports, 33, 382-431. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Nakamura, Y., Kobayashi, J., Gilmore, J., Mascal, M., Rinehart, K.L., Nakamura, H., et al. (1986) Bromo-Eudistomin D, a Novel Inducer of Calcium Release from Fragmented Sarcoplasmic Reticulum that Causes Contractions of Skinned Muscle Fibers. Journal of Biological Chemistry, 261, 4139-4142. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Murcia, C., Coello, L., Fernández, R., Martín, M., Reyes, F., Francesch, A., et al. (2014) Tanjungides A and B: New Antitumoral Bromoindole Derived Compounds from Diazona cf formosa. Isolation and Total Synthesis. Marine Drugs, 12, 1116-1130. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Ota, Y., Chinen, T., Yoshida, K., Kudo, S., Nagumo, Y., Shiwa, Y., et al. (2016) Eudistomin C, an Antitumor and Antiviral Natural Product, Targets 40s Ribosome and Inhibits Protein Translation. ChemBioChem, 17, 1616-1620. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Xiao, L. (2022) A Review: Meridianins and Meridianins Derivatives. Molecules, 27, Article 8714. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Barros-Nepomuceno, F.W.A., et al. (2021) The Effects of the Alkaloid Tambjamine J on Mice Implanted with Sarcoma 180 Tumor Cells. ChemMedChem, 16, 420-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Bucher, C., Deans, R.M. and Burns, N.Z. (2015) Highly Selective Synthesis of Halomon, Plocamenone, and Isoplocamenone. Journal of the American Chemical Society, 137, 12784-12787. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Carter-Franklin, J.N. and Butler, A. (2004) Vanadium bromoperoxidase-Catalyzed Biosynthesis of Halogenated Marine Natural Products. Journal of the American Chemical Society, 126, 15060-15066. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Crowe, C., et al. (2021) Halogenases: A Palette of Emerging Opportunities for Synthetic Biology-Synthetic Chemistry and C-H Functionalisation. Chemical Society Reviews, 50, 9443-9481. [Google Scholar] [CrossRef]
|
|
[56]
|
郑哲麟, 胡文达, 何亚文. 微生物卤化酶及其应用研究进展[J]. 微生物前沿, 2022, 9(4): 141-155.
|
|
[57]
|
Butler, A. and Sandy, M. (2009) Mechanistic Considerations of Halogenating Enzymes. Nature, 460, 848-854. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Shaw, P.D. and Hager, L.P. (1959) Biological Chlorination. IV. Peroxidative Nature of Enzymatic Chlorination. Journal of the American Chemical Society, 81, 6527-6528. [Google Scholar] [CrossRef]
|
|
[59]
|
Dunford, H.B., Lambeir, A., Kashem, M.A. and Pickard, M. (1987) On the Mechanism of Chlorination by Chloroperoxidase. Archives of Biochemistry and Biophysics, 252, 292-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Hofrichter, M. and Ullrich, R. (2006) Heme-Thiolate Haloperoxidases: Versatile Biocatalysts with Biotechnological and Environmental Significance. Applied Microbiology and Biotechnology, 71, 276-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Ullrich, R., Nüske, J., Scheibner, K., Spantzel, J. and Hofrichter, M. (2004) Novel Haloperoxidase from the Agaric Basidiomycete Agrocybe aegerita Oxidizes Aryl Alcohols and Aldehydes. Applied and Environmental Microbiology, 70, 4575-4581. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Anh, D.H., Ullrich, R., Benndorf, D., Svatoś, A., Muck, A. and Hofrichter, M. (2007) The Coprophilous Mushroom Coprinus radians Secretes a Haloperoxidase that Catalyzes Aromatic Peroxygenation. Applied and Environmental Microbiology, 73, 5477-5485. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Auer, M., Gruber, C., Bellei, M., Pirker, K.F., Zamocky, M., Kroiss, D., et al. (2013) A Stable Bacterial Peroxidase with Novel Halogenating Activity and an Autocatalytically Linked Heme Prosthetic Group. Journal of Biological Chemistry, 288, 27181-27199. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Arnhold, J. and Malle, E. (2022) Halogenation Activity of Mammalian Heme Peroxidases. Antioxidants, 11, Article 890. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Marcinkiewicz, J. and Kontny, E. (2012) Taurine and Inflammatory Diseases. Amino Acids, 46, 7-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Davies, M.J. and Hawkins, C.L. (2020) The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease. Antioxidants & Redox Signaling, 32, 957-981. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Wedes, S.H., Wu, W., Comhair, S.A.A., McDowell, K.M., DiDonato, J.A., Erzurum, S.C., et al. (2011) Urinary Bromotyrosine Measures Asthma Control and Predicts Asthma Exacerbations in Children. The Journal of Pediatrics, 159, 248-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Asahi, T., Kondo, H., Masuda, M., Nishino, H., Aratani, Y., Naito, Y., et al. (2010) Chemical and Immunochemical Detection of 8-Halogenated Deoxyguanosines at Early Stage Inflammation. Journal of Biological Chemistry, 285, 9282-9291. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Péterfi, Z. and Geiszt, M. (2014) Peroxidasins: Novel Players in Tissue Genesis. Trends in Biochemical Sciences, 39, 305-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Bathish, B., Paumann-Page, M., Paton, L.N., Kettle, A.J. and Winterbourn, C.C. (2020) Peroxidasin Mediates Bromination of Tyrosine Residues in the Extracellular Matrix. Journal of Biological Chemistry, 295, 12697-12705. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Butler, A. and Carter-Franklin, J.N. (2004) The Role of Vanadium Bromoperoxidase in the Biosynthesis of Halogenated Marine Natural Products. Natural Product Reports, 21, 180-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Vilter, H. (1984) Peroxidases from Phaeophyceae: A Vanadium(V)-Dependent Peroxidase from Ascophyllum nodosum. Phytochemistry, 23, 1387-1390. [Google Scholar] [CrossRef]
|
|
[73]
|
Johnson, T.L., Palenik, B. and Brahamsha, B. (2011) Characterization of a Functional Vanadium-Dependent Bromoperoxidase in the Marine Cyanobacterium Synechococcus sp. CC93111. Journal of Phycology, 47, 792-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Zhang, B., Cao, X., Cheng, X., Wu, P., Xiao, T. and Zhang, W. (2010) Efficient Purification with High Recovery of Vanadium Bromoperoxidase from Corallina officinalis. Biotechnology Letters, 33, 545-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Renirie, R., Pierlot, C., Aubry, J., Hartog, A.F., Schoemaker, H.E., Alsters, P.L., et al. (2003) Vanadium Chloroperoxidase as a Catalyst for Hydrogen Peroxide Disproportionation to Singlet Oxygen in Mildly Acidic Aqueous Environment. Advanced Synthesis & Catalysis, 345, 849-858. [Google Scholar] [CrossRef]
|
|
[76]
|
McLauchlan, C.C., Murakami, H.A., Wallace, C.A. and Crans, D.C. (2018) Coordination Environment Changes of the Vanadium in Vanadium-Dependent Haloperoxidase Enzymes. Journal of Inorganic Biochemistry, 186, 267-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Martínez, V.M., Cremer, G.D., Roeffaers, M.B.J., Sliwa, M., Baruah, M., De Vos, D.E., et al. (2008) Exploration of Single Molecule Events in a Haloperoxidase and Its Biomimic: Localization of Halogenation Activity. Journal of the American Chemical Society, 130, 13192-13193. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Agarwal, V., Miles, Z.D., Winter, J.M., Eustáquio, A.S., El Gamal, A.A. and Moore, B.S. (2017) Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chemical Reviews, 117, 5619-5674. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Tschirret-Guth, R.A. and Butler, A. (1994) Evidence for Organic Substrate Binding to Vanadium Bromoperoxidase. Journal of the American Chemical Society, 116, 411-412. [Google Scholar] [CrossRef]
|
|
[80]
|
Martinez, J.S., Carroll, G.L., Tschirret-Guth, R.A., Altenhoff, G., Little, R.D. and Butler, A. (2001) On the Regiospecificity of Vanadium Bromoperoxidase. Journal of the American Chemical Society, 123, 3289-3294. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Kaneko, K., Washio, K., Umezawa, T., Matsuda, F., Morikawa, M. and Okino, T. (2014) Cdna Cloning and Characterization of Vanadium-Dependent Bromoperoxidases from the Red Alga Laurencia nipponica. Bioscience, Biotechnology, and Biochemistry, 78, 1310-1319. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Andersson, M.A. and Allenmark, S.G. (1998) Asymmetric Sulfoxidation Catalyzed by a Vanadium Bromoperoxidase: Substrate Requirements of the Catalyst. Tetrahedron, 54, 15293-15304. [Google Scholar] [CrossRef]
|
|
[83]
|
Coughlin, P., Roberts, S., Rush, C. and Willetts, A. (1993) Biotransformation of Alkenes by Haloperoxidases: Regiospecific Bromohydrin Formation from Cinnamyl Substrates. Biotechnology Letters, 15, 907-912. [Google Scholar] [CrossRef]
|
|
[84]
|
Camilli, A. and Bassler, B.L. (2006) Bacterial Small-Molecule Signaling Pathways. Science, 311, 1113-1116. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Michels, J.J., Allain, E.J., Borchardt, S.A., Hu, P. and McCoy, W.F. (2000) Degradation Pathway of Homoserine Lactone Bacterial Signal Molecules by Halogen Antimicrobials Identified by Liquid Chromatography with Photodiode Array and Mass Spectrometric Detection. Journal of Chromatography A, 898, 153-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Keltsch, N.G., Pütz, E., Dietrich, C., Wick, A., Tremel, W. and Ternes, T.A. (2023) Bromination of Quorum Sensing Molecules: Vanadium Bromoperoxidase and Cerium Dioxide Nanocrystals via Free Active Bromine Transform Bacterial Communication. Environmental Science & Technology, 57, 18491-18498. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Syrpas, M., Ruysbergh, E., Blommaert, L., Vanelslander, B., Sabbe, K., Vyverman, W., et al. (2014) Haloperoxidase Mediated Quorum Quenching by Nitzschia cf Pellucida: Study of the Metabolization of N-Acyl Homoserine Lactones by a Benthic Diatom. Marine Drugs, 12, 352-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Sandy, M., Carter-Franklin, J.N., Martin, J.D. and Butler, A. (2011) Vanadium Bromoperoxidase from Delisea pulchra: Enzyme-Catalyzed Formation of Bromofuranone and Attendant Disruption of Quorum Sensing. Chemical Communications, 47, 12086-12088. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Cosse, A., Potin, P. and Leblanc, C. (2009) Patterns of Gene Expression Induced by Oligoguluronates Reveal Conserved and Environment-Specific Molecular Defense Responses in the Brown Alga Laminaria digitata. New Phytologist, 182, 239-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Almeida, M., Filipe, S., Humanes, M., Maia, M.F., Melo, R., Severino, N., et al. (2001) Vanadium Haloperoxidases from Brown Algae of the Laminariaceae Family. Phytochemistry, 57, 633-642. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Johnson, T.L., Brahamsha, B., Palenik, B. and Mühle, J. (2015) Halomethane Production by Vanadium-Dependent Bromoperoxidase in Marine Synechococcus. Limnology and Oceanography, 60, 1823-1835. [Google Scholar] [CrossRef]
|
|
[92]
|
Lin, C.Y. and Manley, S.L. (2012) Bromoform Production from Seawater Treated with Bromoperoxidase. Limnology and Oceanography, 57, 1857-1866. [Google Scholar] [CrossRef]
|
|
[93]
|
Wever, R. and Van der Horst, M.A. (2013) The Role of Vanadium Haloperoxidases in the Formation of Volatile Brominated Compounds and Their Impact on the Environment. Dalton Transactions, 42, 11778-11786. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Theiler, R., Cook, J.C., Hager, L.P. and Siuda, J.F. (1978) Halohydrocarbon Synthesis by Bromoperoxidase. Science, 202, 1094-1096. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Gkotsi, D.S., Dhaliwal, J., McLachlan, M.M., Mulholand, K.R. and Goss, R.J. (2018) Halogenases: Powerful Tools for Biocatalysis (Mechanisms Applications and Scope). Current Opinion in Chemical Biology, 43, 119-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Thapa, H.R., et al. (2018) Chemoenzymatic Synthesis of Starting Materials and Characterization of Halogenases Requiring Acyl Carrier Protein-Tethered Substrates. Methods in Enzymology, 604, 333-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Dong, C., Flecks, S., Unversucht, S., Haupt, C., Van Pée, K. and Naismith, J.H. (2005) Tryptophan 7-Halogenase (PrnA) Structure Suggests a Mechanism for Regioselective Chlorination. Science, 309, 2216-2219. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Neubauer, P.R., Widmann, C., Wibberg, D., Schröder, L., Frese, M., Kottke, T., et al. (2018) A Flavin-Dependent Halogenase from Metagenomic Analysis Prefers Bromination over Chlorination. PLOS ONE, 13, e0196797. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Widmann, C., Ismail, M., Sewald, N. and Niemann, H.H. (2020) Structure of Apo Flavin-Dependent Halogenase Xcc4156 Hints at a Reason for Cofactor-Soaking Difficulties. Acta Crystallographica Section D Structural Biology, 76, 687-697. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
El Gamal, A., Agarwal, V., Diethelm, S., Rahman, I., Schorn, M.A., Sneed, J.M., et al. (2016) Biosynthesis of Coral Settlement Cue Tetrabromopyrrole in Marine Bacteria by a Uniquely Adapted Brominase-Thioesterase Enzyme Pair. Proceedings of the National Academy of Sciences, 113, 3797-3802. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
El Gamal, A., Agarwal, V., Rahman, I. and Moore, B.S. (2016) Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles. Journal of the American Chemical Society, 138, 13167-13170. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Adak, S. and Moore, B.S. (2021) Cryptic Halogenation Reactions in Natural Product Biosynthesis. Natural Product Reports, 38, 1760-1774. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Gkotsi, D.S., Ludewig, H., Sharma, S.V., Connolly, J.A., Dhaliwal, J., Wang, Y., et al. (2019) A Marine Viral Halogenase that Iodinates Diverse Substrates. Nature Chemistry, 11, 1091-1097. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Kalinovskaya, N.I., Dmitrenok, A.S., Kuznetsova, T.A., Frolova, G.M., Christen, R., Laatsch, H., et al. (2008) “Pseudoalteromonas januaria” SUT 11 as the Source of Rare Lipodepsipeptides. Current Microbiology, 56, 199-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Chau, R., Pearson, L.A., Cain, J., Kalaitzis, J.A. and Neilan, B.A. (2021) A Pseudoalteromonas Clade with Remarkable Biosynthetic Potential. Applied and Environmental Microbiology, 87, e02604-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
Nguyen, D.D., Wu, C.-H., Moree, W.J., Lamsa, A., Medema, M.H., Zhao, X., et al. (2013) Ms/Ms Networking Guided Analysis of Molecule and Gene Cluster Families. Proceedings of the National Academy of Sciences, 110, E2611-E2620. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Ross, A.C., Gulland, L.E.S., Dorrestein, P.C. and Moore, B.S. (2014) Targeted Capture and Heterologous Expression of the Pseudoalteromonas Alterochromide Gene Cluster in Escherichia coli Represents a Promising Natural Product Exploratory Platform. ACS Synthetic Biology, 4, 414-420. [Google Scholar] [CrossRef] [PubMed]
|
|
[108]
|
Ren, Y., Liu, R., Zheng, Y., Wang, H., Meng, Q., Zhu, T., et al. (2024) Biosynthetic Mechanism of the Yellow Pigments in the Marine Bacterium Pseudoalteromonas sp. Strain T1lg65. Applied and Environmental Microbiology, 90, e01779-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Foulston, L.C. and Bibb, M.J. (2010) Microbisporicin Gene Cluster Reveals Unusual Features of Lantibiotic Biosynthesis in Actinomycetes. Proceedings of the National Academy of Sciences, 107, 13461-13466. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Nguyen, N.A., Lin, Z., Mohanty, I., Garg, N., Schmidt, E.W. and Agarwal, V. (2021) An Obligate Peptidyl Brominase Underlies the Discovery of Highly Distributed Biosynthetic Gene Clusters in Marine Sponge Microbiomes. Journal of the American Chemical Society, 143, 10221-10231. [Google Scholar] [CrossRef] [PubMed]
|
|
[111]
|
Nguyen, N.A. and Agarwal, V. (2023) A Leader-Guided Substrate Tolerant RiPP Brominase Allows Suzuki-Miyaura Cross-Coupling Reactions for Peptides and Proteins. Biochemistry, 62, 1838-1843. [Google Scholar] [CrossRef] [PubMed]
|
|
[112]
|
Edwards, D.J., Marquez, B.L., Nogle, L.M., McPhail, K., Goeger, D.E., Roberts, M.A., et al. (2004) Structure and Biosynthesis of the Jamaicamides, New Mixed Polyketide-Peptide Neurotoxins from the Marine Cyanobacterium Lyngbya majuscula. Chemistry & Biology, 11, 817-833. [Google Scholar] [CrossRef] [PubMed]
|
|
[113]
|
Esquenazi, E., Jones, A.C., Byrum, T., Dorrestein, P.C. and Gerwick, W.H. (2011) Temporal Dynamics of Natural Product Biosynthesis in Marine Cyanobacteria. Proceedings of the National Academy of Sciences, 108, 5226-5231. [Google Scholar] [CrossRef] [PubMed]
|
|
[114]
|
Lukowski, A.L., Hubert, F.M., Ngo, T., Avalon, N.E., Gerwick, W.H. and Moore, B.S. (2023) Enzymatic Halogenation of Terminal Alkynes. Journal of the American Chemical Society, 145, 18716-18721. [Google Scholar] [CrossRef] [PubMed]
|
|
[115]
|
Neubauer, P.R., Pienkny, S., Wessjohann, L., Brandt, W. and Sewald, N. (2020) Predicting the Substrate Scope of the Flavin-Dependent Halogenase BrvH. ChemBioChem, 21, 3282-3288. [Google Scholar] [CrossRef] [PubMed]
|
|
[116]
|
Xu, D., Metz, J., Harmody, D., Peterson, T., Winder, P., Guzmán, E.A., et al. (2022) Brominated and Sulfur-Containing Angucyclines Derived from a Single Pathway: Identification of Nocardiopsistins D-F. Organic Letters, 24, 7900-7904. [Google Scholar] [CrossRef] [PubMed]
|
|
[117]
|
Panter, F., Garcia, R., Thewes, A., Zaburannyi, N., Bunk, B., Overmann, J., et al. (2019) Production of a Dibrominated Aromatic Secondary Metabolite by a Planctomycete Implies Complex Interaction with a Macroalgal Host. ACS Chemical Biology, 14, 2713-2719. [Google Scholar] [CrossRef] [PubMed]
|
|
[118]
|
Gäfe, S. and Niemann, H.H. (2023) Structural Basis of Regioselective Tryptophan Dibromination by the Single-Component Flavin-Dependent Halogenase AetF. Acta Crystallographica Section D Structural Biology, 79, 596-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[119]
|
Adak, S., Lukowski, A.L., Schäfer, R.J.B. and Moore, B.S. (2022) From Tryptophan to Toxin: Nature’s Convergent Biosynthetic Strategy to Aetokthonotoxin. Journal of the American Chemical Society, 144, 2861-2866. [Google Scholar] [CrossRef] [PubMed]
|
|
[120]
|
Jiang, Y., Snodgrass, H.M., Zubi, Y.S., Roof, C.V., Guan, Y., Mondal, D., et al. (2022) The Single-Component Flavin Reductase/Flavin-Dependent Halogenase AetF Is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins. Angewandte Chemie International Edition, 61, e202214610. [Google Scholar] [CrossRef] [PubMed]
|
|
[121]
|
Timilsina, S., Potnis, N., Newberry, E.A., Liyanapathiranage, P., Iruegas-Bocardo, F., White, F.F., et al. (2020) Xanthomonas Diversity, Virulence and Plant-Pathogen Interactions. Nature Reviews Microbiology, 18, 415-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[122]
|
Andrewes, A.G., Jenkins, C.L., Starr, M.P., Shepherd, J. and Hope, H. (1976) Structure of Xanthomonadin I, a Novel Dibrominated Aryl-Polyene Pigment Produced by the Bacterium. Tetrahedron Letters, 17, 4023-4024. [Google Scholar] [CrossRef]
|
|
[123]
|
郑哲麟, 等. 黄素依赖型溴化酶XanJ参与黄单胞菌菌黄素的生物合成[J]. 植物病理学报, 2023, 53(2): 229-244. [Google Scholar] [CrossRef]
|