[1]
|
American Diabetes Association Professional Practice Committee (2021) 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care, 45, S17-S38. https://doi.org/10.2337/dc22-s002
|
[2]
|
Hu, G., Liu, H., Leng, J., Wang, L., Li, W., Zhang, S., et al. (2022) Effects of a Lifestyle Intervention in Young Women with GDM and Subsequent Diabetes. Nutrients, 14, Article 5232. https://doi.org/10.3390/nu14245232
|
[3]
|
Tian, M., Du, L., Ma, G., Zhang, T., Ma, X., Zhang, Y., et al. (2022) Secular Increase in the Prevalence of Gestational Diabetes and Its Associated Adverse Pregnancy Outcomes from 2014 to 2021 in Hebei Province, China. Frontiers in Endocrinology, 13, Article 1039051. https://doi.org/10.3389/fendo.2022.1039051
|
[4]
|
Kek, H., Su, Y., Tey, S., Yang, M., Chang, L., Hung, Y., et al. (2023) The Joint Effect of Gestational Diabetes Mellitus and Hypertension Contribute to Higher Risk of Diabetes Mellitus After Delivery: A Nationwide Population-Based Study. BMC Pregnancy and Childbirth, 23, Article No. 539. https://doi.org/10.1186/s12884-023-05829-6
|
[5]
|
Parikh, N.I., Gonzalez, J.M., Anderson, C.A.M., Judd, S.E., Rexrode, K.M., Hlatky, M.A., et al. (2021) Adverse Pregnancy Outcomes and Cardiovascular Disease Risk: Unique Opportunities for Cardiovascular Disease Prevention in Women: A Scientific Statement from the American Heart Association. Circulation, 143, e902-e916. https://doi.org/10.1161/cir.0000000000000961
|
[6]
|
Alejandro, E.U., Mamerto, T.P., Chung, G., Villavieja, A., Gaus, N.L., Morgan, E., et al. (2020) Gestational Diabetes Mellitus: A Harbinger of the Vicious Cycle of Diabetes. International Journal of Molecular Sciences, 21, Article 5003. https://doi.org/10.3390/ijms21145003
|
[7]
|
American Diabetes Association Professional Practice Committee (2021) 15. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes—2022. Diabetes Care, 45, S232-S243. https://doi.org/10.2337/dc22-s015
|
[8]
|
Alles, J., Fehlmann, T., Fischer, U., Backes, C., Galata, V., Minet, M., et al. (2019) An Estimate of the Total Number of True Human miRNAs. Nucleic Acids Research, 47, 3353-3364. https://doi.org/10.1093/nar/gkz097
|
[9]
|
Mori, T., Ngouv, H., Hayashida, M., Akutsu, T. and Nacher, J.C. (2018) ncRNA-Disease Association Prediction Based on Sequence Information and Tripartite Network. BMC Systems Biology, 12, Article No. 37. https://doi.org/10.1186/s12918-018-0527-4
|
[10]
|
Wang, H., Tang, J., Ding, Y. and Guo, F. (2021) Exploring Associations of Non-Coding Rnas in Human Diseases via Three-Matrix Factorization with Hypergraph-Regular Terms on Center Kernel Alignment. Briefings in Bioinformatics, 22, bbaa409. https://doi.org/10.1093/bib/bbaa409
|
[11]
|
Li, Z., Zhong, T., Huang, D., You, Z. and Nie, R. (2022) Hierarchical Graph Attention Network for miRNA-Disease Association Prediction. Molecular Therapy, 30, 1775-1786. https://doi.org/10.1016/j.ymthe.2022.01.041
|
[12]
|
O'Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Overview of Microrna Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9, Article 402. https://doi.org/10.3389/fendo.2018.00402
|
[13]
|
Treiber, T., Treiber, N. and Meister, G. (2018) Regulation of Microrna Biogenesis and Its Crosstalk with Other Cellular Pathways. Nature Reviews Molecular Cell Biology, 20, 5-20. https://doi.org/10.1038/s41580-018-0059-1
|
[14]
|
Peng, X., Wang, Q., Li, W., Ge, G., Peng, J., Xu, Y., et al. (2023) Comprehensive Overview of Microrna Function in Rheumatoid Arthritis. Bone Research, 11, Article No. 8. https://doi.org/10.1038/s41413-023-00244-1
|
[15]
|
Burger, K. and Gullerova, M. (2015) Swiss Army Knives: Non-Canonical Functions of Nuclear Drosha and Dicer. Nature Reviews Molecular Cell Biology, 16, 417-430. https://doi.org/10.1038/nrm3994
|
[16]
|
Gregory, R.I., Yan, K., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., et al. (2004) The Microprocessor Complex Mediates the Genesis of Micrornas. Nature, 432, 235-240. https://doi.org/10.1038/nature03120
|
[17]
|
Hutvágner, G., McLachlan, J., Pasquinelli, A.E., Bálint, E., Tuschl, T. and Zamore, P.D. (2001) A Cellular Function for the Rna-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA. Science, 293, 834-838. https://doi.org/10.1126/science.1062961
|
[18]
|
Santovito, D. and Weber, C. (2022) Non-Canonical Features of Micrornas: Paradigms Emerging from Cardiovascular Disease. Nature Reviews Cardiology, 19, 620-638. https://doi.org/10.1038/s41569-022-00680-2
|
[19]
|
Addo, K.A., Palakodety, N., Hartwell, H.J., Tingare, A. and Fry, R.C. (2020) Placental Micrornas: Responders to Environmental Chemicals and Mediators of Pathophysiology of the Human Placenta. Toxicology Reports, 7, 1046-1056. https://doi.org/10.1016/j.toxrep.2020.08.002
|
[20]
|
檀丽, 彭巧捷, 陈丽春. 妊娠期糖尿病胎盘中miR-95、-548am、-1246的表达及其与脂肪细胞因子、葡萄糖转运体的关系 [J]. 海南医学院学报, 2016, 22(23): 2797-9+803.
|
[21]
|
Zhang, L., Li, K., Tian, S., Wang, X., Li, J., Dong, Y., et al. (2021) Down-regulation of microRNA-30d-5p Is Associated with Gestational Diabetes Mellitus by Targeting RAB8A. Journal of Diabetes and its Complications, 35, Article ID: 107959. https://doi.org/10.1016/j.jdiacomp.2021.107959
|
[22]
|
Jayabalan, N., Scholz-Romero, K., Guanzon, D., Lai, A., Mcintyre, D., Lappas, M., et al. (2020) 1972-P: Adipose Tissue-Derived Exosomal Microrna Regulates Placental Glucose Uptake in Gestational Diabetes Mellitus Pregnancies. Diabetes, 69, 1972-P. https://doi.org/10.2337/db20-1972-p
|
[23]
|
Guan, C., Cao, J., Zhang, L., Wang, X., Ma, X. and Xia, H. (2022) Mir-199a Is Upregulated in GDM Targeting the MeCP2-Trpc3 Pathway. Frontiers in Endocrinology, 13, Article 917386. https://doi.org/10.3389/fendo.2022.917386
|
[24]
|
Radojičić, O., Dobrijević, Z., Robajac, D., Gligorijević, N., Mandić Marković, V., Miković, Ž., et al. (2022) Gestational Diabetes Is Associated with an Increased Expression of Mir-27a in Peripheral Blood Mononuclear Cells. Molecular Diagnosis & Therapy, 26, 421-435. https://doi.org/10.1007/s40291-022-00591-5
|
[25]
|
Zhang, X., Wang, W., Zhu, W., Dong, J., Cheng, Y., Yin, Z., et al. (2019) Mechanisms and Functions of Long Non-Coding Rnas at Multiple Regulatory Levels. International Journal of Molecular Sciences, 20, Article 5573. https://doi.org/10.3390/ijms20225573
|
[26]
|
Schmitt, A.M. and Chang, H.Y. (2017) Long Noncoding Rnas: At the Intersection of Cancer and Chromatin Biology. Cold Spring Harbor Perspectives in Medicine, 7, a026492. https://doi.org/10.1101/cshperspect.a026492
|
[27]
|
Zhang, X., Tang, X., Hamblin, M.H. and Yin, K. (2018) Long Non-Coding RNA Malat1 Regulates Angiogenesis in Hindlimb Ischemia. International Journal of Molecular Sciences, 19, Article 1723. https://doi.org/10.3390/ijms19061723
|
[28]
|
Yao, J., Wang, X., Li, Y., Shan, K., Yang, H., Wang, Y., et al. (2022) Long Non‐coding RNA MALAT1 Regulates Retinal Neurodegeneration through CREB Signaling. EMBO Molecular Medicine, 14, e15623. https://doi.org/10.15252/emmm.202115623
|
[29]
|
Munschauer, M., Nguyen, C.T., Sirokman, K., Hartigan, C.R., Hogstrom, L., Engreitz, J.M., et al. (2018) The NORAD Lncrna Assembles a Topoisomerase Complex Critical for Genome Stability. Nature, 561, 132-136. https://doi.org/10.1038/s41586-018-0453-z
|
[30]
|
Mohamadi, M., Ghaedi, H., Kazerouni, F., Erfanian Omidvar, M., Kalbasi, S., Shanaki, M., et al. (2019) Deregulation of Long Noncoding RNA SNHG17 and TTC28-AS1 Is Associated with Type 2 Diabetes Mellitus. Scandinavian Journal of Clinical and Laboratory Investigation, 79, 519-523. https://doi.org/10.1080/00365513.2019.1664760
|
[31]
|
Li, J., Du, B., Geng, X. and Zhou, L. (2021) Lncrna SNHG17 Is Downregulated in Gestational Diabetes Mellitus (GDM) and Has Predictive Values. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 831-838. https://doi.org/10.2147/dmso.s263942
|
[32]
|
Zhang, Y., Qu, L., Ni, H., Wang, Y., Li, L., Yang, X., et al. (2020) Expression and Function of Lncrna MALAT1 in Gestational Diabetes Mellitus. Advances in Clinical and Experimental Medicine, 29, 903-910. https://doi.org/10.17219/acem/121524
|
[33]
|
Ran, G., Zhu, X. and Qin, Y. (2021) Lncrna SOX2OT Is Upregulated in Gestational Diabetes Mellitus (GDM) and Correlated with Multiple Adverse Events. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 3989-3995. https://doi.org/10.2147/dmso.s319739
|
[34]
|
Cao, M., Zhang, L., Lin, Y., Li, Z., Xu, J., Shi, Z., et al. (2020) Differential Mrna and Long Noncoding RNA Expression Profiles in Umbilical Cord Blood Exosomes from Gestational Diabetes Mellitus Patients. DNA and Cell Biology, 39, 2005-2016. https://doi.org/10.1089/dna.2020.5783
|
[35]
|
Yang, F., Chen, Y., Xue, Z., Lv, Y., Shen, L., Li, K., et al. (2020) High-throughput Sequencing and Exploration of the lncRNA-circRNA-miRNA-mRNA Network in Type 2 Diabetes Mellitus. BioMed Research International, 2020, Article ID: 8162524. https://doi.org/10.1155/2020/8162524
|
[36]
|
Leng, L., Zhang, C., Ren, L. and Li, Q. (2018) Construction of a Long Non-Coding Rna-Mediated Competitive Endogenous RNA Network Reveals Global Patterns and Regulatory Markers in Gestational Diabetes. International Journal of Molecular Medicine, 43, 927-935. https://doi.org/10.3892/ijmm.2018.4026
|
[37]
|
Ornoy, A., Becker, M., Weinstein-Fudim, L. and Ergaz, Z. (2021) Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring: A Clinical Review. International Journal of Molecular Sciences, 22, Article 2965. https://doi.org/10.3390/ijms22062965
|
[38]
|
Kampmann, U., Knorr, S., Fuglsang, J. and Ovesen, P. (2019) Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. Journal of Diabetes Research, 2019, Article ID: 5320156. https://doi.org/10.1155/2019/5320156
|
[39]
|
Shi, Z., Zhao, C., Long, W., Ding, H. and Shen, R. (2015) Microarray Expression Profile Analysis of Long Non-Coding Rnas in Umbilical Cord Plasma Reveals Their Potential Role in Gestational Diabetes-Induced Macrosomia. Cellular Physiology and Biochemistry, 36, 542-554. https://doi.org/10.1159/000430119
|
[40]
|
Guiyu, S., Quan, N., Ruochen, W., Dan, W., Bingnan, C., Yuanyua, L., et al. (2021) LncRNA-SNX17 Promotes HTR-8/SVneo Proliferation and Invasion through miR-517a/IGF-1 in the Placenta of Diabetic Macrosomia. Reproductive Sciences, 29, 596-605. https://doi.org/10.1007/s43032-021-00687-z
|
[41]
|
Su, R., Wang, C., Feng, H., Lin, L., Liu, X., Wei, Y., et al. (2016) Alteration in Expression and Methylation of IGF2/H19 in Placenta and Umbilical Cord Blood Are Associated with Macrosomia Exposed to Intrauterine Hyperglycemia. PLOS ONE, 11, e0148399. https://doi.org/10.1371/journal.pone.0148399
|
[42]
|
Lu, J., Wu, J., Zhao, Z., Wang, J. and Chen, Z. (2018) Circulating Lncrna Serve as Fingerprint for Gestational Diabetes Mellitus Associated with Risk of Macrosomia. Cellular Physiology and Biochemistry, 48, 1012-1018. https://doi.org/10.1159/000491969
|
[43]
|
Hsu, M. and Coca-Prados, M. (1979) Electron Microscopic Evidence for the Circular Form of RNA in the Cytoplasm of Eukaryotic Cells. Nature, 280, 339-340. https://doi.org/10.1038/280339a0
|
[44]
|
Liu, C. and Chen, L. (2022) Circular RNAs: Characterization, Cellular Roles, and Applications. Cell, 185, 2016-2034. https://doi.org/10.1016/j.cell.2022.04.021
|
[45]
|
Yuan, Y., Gong, Y., Zhong, L., et al. (2022) Circular RNA Expression Profile and Competing Endogenous RNA Regulatory Network in Preeclampsia. Placenta, 119, 32-38. https://doi.org/10.1016/j.placenta.2022.01.013
|
[46]
|
Yuan, Y., Gong, Y., Zhong, L., Ding, X., Yang, Z., Su, X., et al. (2022) Circular RNA Expression Profile and Competing Endogenous RNA Regulatory Network in Preeclampsia. Placenta, 119, 32-38. https://doi.org/10.1016/j.placenta.2022.01.013
|
[47]
|
Hua, F. (2020) New Insights into Diabetes Mellitus and Its Complications: A Narrative Review. Annals of Translational Medicine, 8, 1689-1689. https://doi.org/10.21037/atm-20-7243
|
[48]
|
Liang, H., Hou, L., Wang, Q., et al. (2021) Serum hsa_circ_0054633 Is Elevated and Correlated with Clinical Features in Type 2 Diabetes Mellitus. Annals of Clinical and Laboratory Science, 51, 90-96.
|
[49]
|
Yan, L., Feng, J., Cheng, F., Cui, X., Gao, L., Chen, Y., et al. (2018) Circular RNA Expression Profiles in Placental Villi from Women with Gestational Diabetes Mellitus. Biochemical and Biophysical Research Communications, 498, 743-750. https://doi.org/10.1016/j.bbrc.2018.03.051
|
[50]
|
Wang, H., She, G., Zhou, W., Liu, K., Miao, J. and Yu, B. (2019) Expression Profile of Circular Rnas in Placentas of Women with Gestational Diabetes Mellitus. Endocrine Journal, 66, 431-441. https://doi.org/10.1507/endocrj.ej18-0291
|
[51]
|
Tang, L., Li, P. and Li, L. (2020) Whole Transcriptome Expression Profiles in Placenta Samples from Women with Gestational Diabetes Mellitus. Journal of Diabetes Investigation, 11, 1307-1317. https://doi.org/10.1111/jdi.13250
|
[52]
|
Chen, H., Zhang, S., Wu, Y., Li, Z., Wang, D., Cai, S., et al. (2021) The Role of Circular RNA Circ_0008285 in Gestational Diabetes Mellitus by Regulating the Biological Functions of Trophoblasts. Biological Research, 54, Article No. 14. https://doi.org/10.1186/s40659-021-00337-3
|