非编码RNA对妊娠期糖尿病发生发展的调控作用
Regulation of Non-Coding RNA on the Development of Gestational Diabetes Mellitus
DOI: 10.12677/acm.2024.1461911, PDF, HTML, XML,   
作者: 覃珍华, 黄 波*:桂林医学院公共卫生学院,广西 桂林
关键词: 妊娠期糖尿病非编码RNA微小RNA环状RNAGestational Diabetes Mellitus Non-Coding RNA MicroRNAs Circular RNA
摘要: 妊娠期糖尿病(GDM)是最常见的妊娠过程中并发症,严重威胁母婴健康和生命安全。非编码RNA (ncRNA)是一类不编码蛋白质的RNA,包括微小RNA (miRNA)、长链非编码RNA (lncRNA)和环状RNA (circRNA)。研究表明,ncRNA在GDM的发生发展中发挥重要作用,因此本文对ncRNA在GDM的关系作一综述,为进一步了解GDM和管理提供理论依据。
Abstract: Gestational diabetes mellitus (GDM) is the most common complication during pregnancy and seriously threatens the health and safety of the mother and child. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, including microRNAs (miRNAs), long-stranded non-coding RNAs (lnc RNAs) and circular RNAs (circRNAs). Studies have shown that ncRNAs play important roles in the occurrence and development of GDM. Therefore, this paper reviews the relationship between ncRNAs and GDM to provide a theoretical basis for further understanding GDM and its management.
文章引用:覃珍华, 黄波. 非编码RNA对妊娠期糖尿病发生发展的调控作用[J]. 临床医学进展, 2024, 14(6): 1288-1295. https://doi.org/10.12677/acm.2024.1461911

1. 引言

妊娠期糖尿病(gestational diabetes mellitus, GDM)是一种特殊类型的糖尿病,是在妊娠期间发生的一种代谢性疾病[1]。随着环境污染、生活工作方式改变的综合影响,GDM的发病率呈逐年上升趋势[2]。根据国际糖尿病联合会(International Diabetes Federation, IDF)的报道,在2021年,我国妊娠期糖尿病患病率为8.6%,受到妊娠期高血糖影响的早产儿高达870万[3]。尽管GDM患者的血糖在分娩后可恢复正常,但该疾病与母婴近、远期的不良健康效应密切相关。GDM患者罹患妊娠期高血压和先兆子痫的风险提高,其中GDM患者罹患妊娠期高血压风险可增加20%,可继发早产、巨大儿、胎儿窘迫、胎儿畸形、产伤、宫内生长受限和新生儿低血糖等病症,是围生期母婴发病和死亡的主要原因,受累的母婴在将来罹患2型糖尿病(T2DM)、代谢综合征、心血管疾病等代谢性疾病的风险更高,严重威胁母婴的生命安全和健康[4] [5]。GDM是一种多因素疾病,其发病机制尚不明确,但胰岛素抵抗和胰岛β细胞功能受损是它重要的病理改变[6]。尽管GDM的防治尚未有公认的策略,但美国糖尿病协会(American Diabetes Association,ADA) 2022年“糖尿病诊治指南”推荐,健康的生活方式是GDM管理的重要组成部分。既往研究表明,通过Carpenter-Coustan诊断标准确诊的GDM孕妇中,70%~85%仅通过健康的生活方式使血糖控制达标,如果按照国际糖尿病与妊娠研究组(International Association of Diabetes and Pregnancy Study Group, IADPSG)的GDM诊断标准,该比例将更高[7]。由GDM所触发的糖尿病恶性代际循环,对人类的整体健康构成显著的威胁。鉴于此,深入理解GDM的发病机理、筛选与GDM紧密相关的生物标志物,并尽早识别处于高风险状态的GDM女性,显得尤为关键和重要。

近年来,随着研究的深入和科技的发展,RNA-seq已经检测出数千种miRNA,miRNA及其他非编码RNA已被证实与GDM的发生发展有关[8]。Miro等[9]、Wang [10]和Li等[11]开发出新的算法可较准确地发现ncRNA与疾病之间的关联,可望更有效地预警疾病,促进早期诊断、治疗和预防。本文就ncRNA与GDM的关系作综述,主要着重介绍lncRNA、miRNA和circRNA在GDM发生发展中的生物学作用及分子机制,为进一步了解GDM,促进其预防和治疗提供理论依据。

2. miRNA

miRNA是一类非编码RNA,具有高度保守的特点,长度约为22个核苷酸,在1993年首次在秀丽隐杆线虫中被发现[12]。miRNA是内源性表达的短链核酸,通过与RNA中的许多不同序列结合,成为任何基因序列的特异性调节因子[13]

miRNA广泛存在于哺乳动物的各类细胞中,是细胞生长、分化和凋亡等一系列至关重要的生物学过程中不可或缺的角色[14]。miRNA生物合成的第一步是合成相对较长的结构化原代转录本,该转录本通过由Drosha [15]和DGCR8 [16]蛋白组成的核微处理器加工成中等长度的发夹前体miRNA (pre-miRNA),并转运到细胞质中,Dicer [17]在细胞质中切割前体形成成熟的miRNA。这些miRNA通过RNA诱导沉默复合体(RNA-induced silencing complex, RISC)介导与靶mRNA的3’UTR结合,导致目的mRNA的翻译受到抑制或降解。3’UTR有多个miRNA位点介导与多种miRNA的结合,因此一种miRNA可以调控数百种mRNA。大量的研究报告显示,miRNA的表达水平的改变与多种疾病有关,例如心血管疾病、自身免疫性疾病和代谢性疾病[18]。因此当miRNA发挥调节作用时,与其相关的多种疾病,包括GDM也可能会受到影响。

在妊娠过程中,miRNA是重要的代谢和发育调节因子,一些miRNA与不良妊娠结局有关,包括胎盘重量、先兆子痫、妊娠高血压和GDM [19]。在GDM患者中,miRNA的异常表达能够有针对性地调控脂肪细胞因子以及葡萄糖转运体的表达水平,这种调控作用可能导致母体脂质代谢的紊乱和胰岛素抵抗的发生[20]。Zhang等[21]的研究指出,GDM患者胎盘中miR-30d的表达下调,滋养层细胞增殖和葡萄糖摄取能力增加,抑制内源性成熟miR-30d-5p的功能后,滋养层细胞的迁移和侵袭能力也得到提高。JAYABALAN等[22]的研究显示,脂肪组织衍生的外泌体miRNA调节GDM妊娠中胎盘葡萄糖的摄取。Guan等[23]研究发现,与正常孕妇相比,GDM患者胎盘中miR-199a-5p显著上调,并在胎盘绒毛中表达。而miR-199a-5p可通过抑制甲基CpG结合蛋白2 (MeCP2)的表达和下调典型瞬时受体电位3 (Trpc3)调控葡萄糖代谢通路,从而导致GDM的发生。Radojičić等[24]的研究结果显示,GDM外周血中miR-27a-3p的表达明显高于对照,妊娠期糖尿病与外周血单个核细胞中miR-27a表达增加有关。

3. lncRNA

LncRNA是长度超过200 nt的非编码RNA,主要与mRNA、DNA、蛋白质和miRNA相互作用,从而以多种方式调节表观遗传、转录、转录后、翻译和翻译后的基因表达[25]。lncRNA转录本的长度超过200 nt,并且没有编码蛋白质的能力,同时具有较短的开放阅读框(ORF)。由于部分ncRNAs有5’UTR和3’UTR结构或部分存在双茎环、三叶草结构,使其能在组织、细胞和体液中稳定表达。与编码蛋白质的mRNA相比,大多数lncRNA的表达水平较低,但具有重要的生物学功能。lncRNA的很大一部分优先定位于细胞核中,并已被证明参与包括染色质结构维护、转录RNA处理等重要的生理过程[26]。现阶段研究表明,lncRNAs在不同的组织、细胞、发育阶段和疾病中存在特定的表达模式,在调节细胞的增殖、迁移和调亡中发挥着特殊作用。

有研究表明,较高水平的保守lncRNA肺胰腺癌转移相关转录本1 (metastasis associated lung adenocarcinoma transcript 1, MALAT1)在不同组织来源的内皮细胞表达,在缺氧时MALAT1表达水平显著增加,进一步研究表明通过小干扰RNAs (siRNA)或Gapme Rs下调MALAT1的表达,可抑制内皮细胞的增殖,并可有效降低缺血后的血流恢复以及下调毛细血管的密度[27]。研究还显示,MALAT1可通过海绵miR-708-5p调节喉癌细胞的恶性表型,例如减少增值、促进细胞凋亡、抑制迁移等。抑制MALAT1可通过海绵miR-708-5p/BRD4来调节YAP1介导的EMT抑制喉癌发展[28]。不仅如此,lncRNA在维持基因组稳定上也发挥了重大作用[29]

3.1. lncRNA与GDM

lncRNA通过多种方式在GDM发生和发展中发挥重要作用。已知lncRNA SNHG17在T2DM中下调,SNHG17的表达水平与高密度脂蛋白胆固醇(HDL-C)呈负相关,这表明SNHG17可能通过调节脂质代谢和脂肪生成参与T2DM的发展[30]。基于此基础,Li等[31]发现,SNHG17在GDM血浆中的表达水平下降,SNHG17的下调可抑制胰腺β细胞的生长,减少胰岛素分泌,并且SNHG17的血浆表达水平与早产有显著的相关性。Zhang等[32]的研究发现,MALAT1在GDM的胎盘组织中高表达,通过干预后,MALAT1的下调可能通过介导TGF-β/NF-κB信号通路抑制炎症和GDM胎盘滋养细胞的增殖、侵袭和迁移。而Ran等[33]研究分析了另一个lncRNA SOX2OT在GDM中的作用,发现SOX2OT在GDM患者中高表达,并且与多个不良妊娠结局有密切关系。

为了深入研究lncRNA与GDM的关系,Cao等[34]通过微阵列技术,对来自GDM患者脐带血的外泌体进行了mRNA和lncRNA表达谱分析,与正常对照组相比,有84个mRNA和256个lncRNA在GDM患者的脐带血外泌体中差异表达。差异表达的mRNA主要与胰高血糖素信号通路相关。进一步的lncRNA/miRNA相互作用分析表明,大多数外泌体lncRNA含有miRNA结合位点,而这些miRNA可能参与调控GDM的发生发展。Yang等[35]构建ceRNA网络,揭示lncRNA在二型糖尿病(T2DM)中的调节作用。Leng等[36]分析GDM的mRNA、miRNA和lncRNA的表达谱,并通过实验验证它们之间的相互作用,最终构建一个与GDM相关的由lncRNA介导的ceRNA网络(lncRNA-mediated ceRNA network, LCEN)。他们发现,相较于编码基因和miRNA节点,lncRNA节点呈现出更高的编码特性,而这解释了虽然lncRNA不直接编码蛋白质,但在LCEN网络中却显示出更为显著的特异性拓扑属性。特别是在核心相关子网络的分析中,lncRNA DLEU1的节点程度位居首位,提示它在与GDM相关的LCEN网络中扮演着至关重要的角色。此外,通过功能分析,研究还观察到GDM相关的ceRNA网络调控机制不仅能够有效区分正常葡萄糖耐量个体与GDM患者,而且与甲状腺激素信号通路的调控相关。这些发现表明为GDM的发生机制提供新的视角,并进一步促进新型GDM分子生物标志物和治疗策略的发掘。综合当前证据,可以确认LncRNA参与GDM的发病过程,MALAT1等LncRNA与糖代谢和胰岛素代谢密切相关。此外,DLEU1也被发现通过参与调节甲状腺激素水平来影响GDM发生,这为我们提供了治疗GDM的新思路。

3.2. lncRNA与GDM合并巨大儿

巨大儿是GDM常见的并发症,妊娠期间超重可增加巨大儿的发病率[37]。一项研究显示,患有GDM的非肥胖孕妇巨大儿发病率为10.2%,而患有GDM的肥胖孕妇巨大儿发生率为20.2% [38]。Shi等[39]收集30名正常孕妇和30名GDM合并巨大儿孕妇的脐带血,使用微阵列技术对其进行筛查,发现在病例组中有1241个lncRNA差异表达,其中5个高表达和3个低表达的lncRNA可能与个体的生长发育、糖脂代谢密切相关。Guiyu等[40]通过lncRNA全基因组微阵列和qRT-PCR,发现在GDM合并巨大儿患者胎盘中lncRNA-SNX17显著上调,并且lncRNA-SNX17可能通过miR-517a/IGF-1途径促进滋养层增殖,这可能和GDM合并巨大儿的发生有关。有研究表明,胎盘和脐带血中的lncRNA IGF2/H19的表达水平和基因的甲基化水平与巨大儿宫内高血糖有密切联系[41]。Lu等[42]对GDM合并巨大儿妇女和正常孕妇的外周血进行表达谱分析,两种lncRNA即XLOC_014172和RP11-230G5.2在GDM合并巨大儿的妇女中高表达,而且这两种lncRNA的受试者工作特征(ROC)曲线下面积高,提示这两种lncRNA可以作为GDM患者和巨大儿预后风险的新型生物标志物。

4. circRNA

circRNA是一种特殊的内源性非编码RNA,具有单链共价闭合环状结构[43],有助于基因表达调控、蛋白质翻译并充当miRNA海绵。它们具有分布广泛、进化保守、结构稳定和组织特异性等特征。研究显示,circRNA在基因表达调控中发挥重要作用,具有成为许多疾病(如肿瘤和代谢性疾病)的生物标志物的潜力[44]。研究表明,circRNA也分布于胎盘中,且可能与妊娠及妊娠并发症有关[45]。Yuan等[46]使用生物信息学对先兆子痫患者的胎盘差异表达circRNA进行分析,研究发现circRNA可能参与了先兆子痫发生发展的病理过程。另有研究表明,circRNA可能与糖尿病的发生有关[47],例如在T2MD患者中,hsa_circ_0054633表达显著升高并且其与糖脂代谢有关[48]

近年来,关于circRNA在妊娠相关疾病中的研究日益增多,其中包括GDM这一重要领域。Yan等[49]通过对circRNA测序结果分析,发现孕38~41周GDM患者胎盘组织中共有482个异常表达的circRNA,包括227个上调circRNA和255个下调circRNA,这些circRNA富集在糖代谢和脂代谢通路。Wang等[50]收集了30例GDM剖宫产患者和15例正常剖宫产妇女的胎盘组织,使用RNA-seq和qRT-PCR进行联合验证,发现circ_5824、circ_3636和circ_0395在GDM患者中高表达。功能分析和信号通路富集发现,这些circRNA参加调控糖基化终产物受体信号通路,其中circ_0395的异常表达可能与GDM的发生或发展有关。Tang等[51]对GDM患者的胎盘全转录组表达谱进行分析,发现circRNA与磷脂酶C活性的激活和胰岛素分泌的调节相关。Chen等[52]的研究发现,circ_0008285在GDM患者的血浆中高表达,circ_0008285与总胆固醇和LDL-C (低密度脂蛋白胆固醇)水平之间存在显著的关联,circ_0001173则低表达且与糖化血红蛋白水平有明确的相关性。大量研究表明,circRNA作为一种新兴的非编码RNA,在GDM的发生发展过程中发挥重要作用,但是这些circRNA在GDM发生机制中的作用尚未完全明确,能否成为潜在的生物标志物还需进一步探讨。

5. 小结

GDM的病因和发病机制尚未完全阐明,妊娠过程中机体生化代谢等受串扰可引发一系列不良妊娠结果。ncRNA是人体内重要的调控分子,在病理生理发挥重要的作用,在GDM的发生发展中扮演重要角色。

目前,已发现多种miRNA、lncRNA及circRNA均被揭示与GDM存在紧密联系。然而目前的研究多聚焦于ncRNA表达谱和单基因层面,忽略诸多潜在影响因素,这些因素包括但不限于地域差异、人群多样性、生物样本的选择、不同妊娠阶段等,它们可能影响对研究结果的解读产生影响。因此,为了更准确地理解ncRNA与GDM之间的关系,我们需要统一研究条件,并通过体外实验如细胞和动物实验进行验证。此外,GDM作为一种特殊的糖尿病,其病理学过程与糖尿病存在一定相似性,但受免疫、内分泌、饮食和生活方式等因素的综合影响。因此探讨环境–遗传的交互作用对GDM发生发展的影响,尤其ncRNA与GDM的相互作用将有助于深入了解GDM的发病机制和开展妊娠并发症疾病的防制,提升妇女儿童的健康水平。

NOTES

*通讯作者。

参考文献

[1] American Diabetes Association Professional Practice Committee (2021) 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care, 45, S17-S38.
https://doi.org/10.2337/dc22-s002
[2] Hu, G., Liu, H., Leng, J., Wang, L., Li, W., Zhang, S., et al. (2022) Effects of a Lifestyle Intervention in Young Women with GDM and Subsequent Diabetes. Nutrients, 14, Article 5232.
https://doi.org/10.3390/nu14245232
[3] Tian, M., Du, L., Ma, G., Zhang, T., Ma, X., Zhang, Y., et al. (2022) Secular Increase in the Prevalence of Gestational Diabetes and Its Associated Adverse Pregnancy Outcomes from 2014 to 2021 in Hebei Province, China. Frontiers in Endocrinology, 13, Article 1039051.
https://doi.org/10.3389/fendo.2022.1039051
[4] Kek, H., Su, Y., Tey, S., Yang, M., Chang, L., Hung, Y., et al. (2023) The Joint Effect of Gestational Diabetes Mellitus and Hypertension Contribute to Higher Risk of Diabetes Mellitus After Delivery: A Nationwide Population-Based Study. BMC Pregnancy and Childbirth, 23, Article No. 539.
https://doi.org/10.1186/s12884-023-05829-6
[5] Parikh, N.I., Gonzalez, J.M., Anderson, C.A.M., Judd, S.E., Rexrode, K.M., Hlatky, M.A., et al. (2021) Adverse Pregnancy Outcomes and Cardiovascular Disease Risk: Unique Opportunities for Cardiovascular Disease Prevention in Women: A Scientific Statement from the American Heart Association. Circulation, 143, e902-e916.
https://doi.org/10.1161/cir.0000000000000961
[6] Alejandro, E.U., Mamerto, T.P., Chung, G., Villavieja, A., Gaus, N.L., Morgan, E., et al. (2020) Gestational Diabetes Mellitus: A Harbinger of the Vicious Cycle of Diabetes. International Journal of Molecular Sciences, 21, Article 5003.
https://doi.org/10.3390/ijms21145003
[7] American Diabetes Association Professional Practice Committee (2021) 15. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes—2022. Diabetes Care, 45, S232-S243.
https://doi.org/10.2337/dc22-s015
[8] Alles, J., Fehlmann, T., Fischer, U., Backes, C., Galata, V., Minet, M., et al. (2019) An Estimate of the Total Number of True Human miRNAs. Nucleic Acids Research, 47, 3353-3364.
https://doi.org/10.1093/nar/gkz097
[9] Mori, T., Ngouv, H., Hayashida, M., Akutsu, T. and Nacher, J.C. (2018) ncRNA-Disease Association Prediction Based on Sequence Information and Tripartite Network. BMC Systems Biology, 12, Article No. 37.
https://doi.org/10.1186/s12918-018-0527-4
[10] Wang, H., Tang, J., Ding, Y. and Guo, F. (2021) Exploring Associations of Non-Coding Rnas in Human Diseases via Three-Matrix Factorization with Hypergraph-Regular Terms on Center Kernel Alignment. Briefings in Bioinformatics, 22, bbaa409.
https://doi.org/10.1093/bib/bbaa409
[11] Li, Z., Zhong, T., Huang, D., You, Z. and Nie, R. (2022) Hierarchical Graph Attention Network for miRNA-Disease Association Prediction. Molecular Therapy, 30, 1775-1786.
https://doi.org/10.1016/j.ymthe.2022.01.041
[12] O'Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Overview of Microrna Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9, Article 402.
https://doi.org/10.3389/fendo.2018.00402
[13] Treiber, T., Treiber, N. and Meister, G. (2018) Regulation of Microrna Biogenesis and Its Crosstalk with Other Cellular Pathways. Nature Reviews Molecular Cell Biology, 20, 5-20.
https://doi.org/10.1038/s41580-018-0059-1
[14] Peng, X., Wang, Q., Li, W., Ge, G., Peng, J., Xu, Y., et al. (2023) Comprehensive Overview of Microrna Function in Rheumatoid Arthritis. Bone Research, 11, Article No. 8.
https://doi.org/10.1038/s41413-023-00244-1
[15] Burger, K. and Gullerova, M. (2015) Swiss Army Knives: Non-Canonical Functions of Nuclear Drosha and Dicer. Nature Reviews Molecular Cell Biology, 16, 417-430.
https://doi.org/10.1038/nrm3994
[16] Gregory, R.I., Yan, K., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., et al. (2004) The Microprocessor Complex Mediates the Genesis of Micrornas. Nature, 432, 235-240.
https://doi.org/10.1038/nature03120
[17] Hutvágner, G., McLachlan, J., Pasquinelli, A.E., Bálint, E., Tuschl, T. and Zamore, P.D. (2001) A Cellular Function for the Rna-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA. Science, 293, 834-838.
https://doi.org/10.1126/science.1062961
[18] Santovito, D. and Weber, C. (2022) Non-Canonical Features of Micrornas: Paradigms Emerging from Cardiovascular Disease. Nature Reviews Cardiology, 19, 620-638.
https://doi.org/10.1038/s41569-022-00680-2
[19] Addo, K.A., Palakodety, N., Hartwell, H.J., Tingare, A. and Fry, R.C. (2020) Placental Micrornas: Responders to Environmental Chemicals and Mediators of Pathophysiology of the Human Placenta. Toxicology Reports, 7, 1046-1056.
https://doi.org/10.1016/j.toxrep.2020.08.002
[20] 檀丽, 彭巧捷, 陈丽春. 妊娠期糖尿病胎盘中miR-95、-548am、-1246的表达及其与脂肪细胞因子、葡萄糖转运体的关系 [J]. 海南医学院学报, 2016, 22(23): 2797-9+803.
[21] Zhang, L., Li, K., Tian, S., Wang, X., Li, J., Dong, Y., et al. (2021) Down-regulation of microRNA-30d-5p Is Associated with Gestational Diabetes Mellitus by Targeting RAB8A. Journal of Diabetes and its Complications, 35, Article ID: 107959.
https://doi.org/10.1016/j.jdiacomp.2021.107959
[22] Jayabalan, N., Scholz-Romero, K., Guanzon, D., Lai, A., Mcintyre, D., Lappas, M., et al. (2020) 1972-P: Adipose Tissue-Derived Exosomal Microrna Regulates Placental Glucose Uptake in Gestational Diabetes Mellitus Pregnancies. Diabetes, 69, 1972-P.
https://doi.org/10.2337/db20-1972-p
[23] Guan, C., Cao, J., Zhang, L., Wang, X., Ma, X. and Xia, H. (2022) Mir-199a Is Upregulated in GDM Targeting the MeCP2-Trpc3 Pathway. Frontiers in Endocrinology, 13, Article 917386.
https://doi.org/10.3389/fendo.2022.917386
[24] Radojičić, O., Dobrijević, Z., Robajac, D., Gligorijević, N., Mandić Marković, V., Miković, Ž., et al. (2022) Gestational Diabetes Is Associated with an Increased Expression of Mir-27a in Peripheral Blood Mononuclear Cells. Molecular Diagnosis & Therapy, 26, 421-435.
https://doi.org/10.1007/s40291-022-00591-5
[25] Zhang, X., Wang, W., Zhu, W., Dong, J., Cheng, Y., Yin, Z., et al. (2019) Mechanisms and Functions of Long Non-Coding Rnas at Multiple Regulatory Levels. International Journal of Molecular Sciences, 20, Article 5573.
https://doi.org/10.3390/ijms20225573
[26] Schmitt, A.M. and Chang, H.Y. (2017) Long Noncoding Rnas: At the Intersection of Cancer and Chromatin Biology. Cold Spring Harbor Perspectives in Medicine, 7, a026492.
https://doi.org/10.1101/cshperspect.a026492
[27] Zhang, X., Tang, X., Hamblin, M.H. and Yin, K. (2018) Long Non-Coding RNA Malat1 Regulates Angiogenesis in Hindlimb Ischemia. International Journal of Molecular Sciences, 19, Article 1723.
https://doi.org/10.3390/ijms19061723
[28] Yao, J., Wang, X., Li, Y., Shan, K., Yang, H., Wang, Y., et al. (2022) Long Non‐coding RNA MALAT1 Regulates Retinal Neurodegeneration through CREB Signaling. EMBO Molecular Medicine, 14, e15623.
https://doi.org/10.15252/emmm.202115623
[29] Munschauer, M., Nguyen, C.T., Sirokman, K., Hartigan, C.R., Hogstrom, L., Engreitz, J.M., et al. (2018) The NORAD Lncrna Assembles a Topoisomerase Complex Critical for Genome Stability. Nature, 561, 132-136.
https://doi.org/10.1038/s41586-018-0453-z
[30] Mohamadi, M., Ghaedi, H., Kazerouni, F., Erfanian Omidvar, M., Kalbasi, S., Shanaki, M., et al. (2019) Deregulation of Long Noncoding RNA SNHG17 and TTC28-AS1 Is Associated with Type 2 Diabetes Mellitus. Scandinavian Journal of Clinical and Laboratory Investigation, 79, 519-523.
https://doi.org/10.1080/00365513.2019.1664760
[31] Li, J., Du, B., Geng, X. and Zhou, L. (2021) Lncrna SNHG17 Is Downregulated in Gestational Diabetes Mellitus (GDM) and Has Predictive Values. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 831-838.
https://doi.org/10.2147/dmso.s263942
[32] Zhang, Y., Qu, L., Ni, H., Wang, Y., Li, L., Yang, X., et al. (2020) Expression and Function of Lncrna MALAT1 in Gestational Diabetes Mellitus. Advances in Clinical and Experimental Medicine, 29, 903-910.
https://doi.org/10.17219/acem/121524
[33] Ran, G., Zhu, X. and Qin, Y. (2021) Lncrna SOX2OT Is Upregulated in Gestational Diabetes Mellitus (GDM) and Correlated with Multiple Adverse Events. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 3989-3995.
https://doi.org/10.2147/dmso.s319739
[34] Cao, M., Zhang, L., Lin, Y., Li, Z., Xu, J., Shi, Z., et al. (2020) Differential Mrna and Long Noncoding RNA Expression Profiles in Umbilical Cord Blood Exosomes from Gestational Diabetes Mellitus Patients. DNA and Cell Biology, 39, 2005-2016.
https://doi.org/10.1089/dna.2020.5783
[35] Yang, F., Chen, Y., Xue, Z., Lv, Y., Shen, L., Li, K., et al. (2020) High-throughput Sequencing and Exploration of the lncRNA-circRNA-miRNA-mRNA Network in Type 2 Diabetes Mellitus. BioMed Research International, 2020, Article ID: 8162524.
https://doi.org/10.1155/2020/8162524
[36] Leng, L., Zhang, C., Ren, L. and Li, Q. (2018) Construction of a Long Non-Coding Rna-Mediated Competitive Endogenous RNA Network Reveals Global Patterns and Regulatory Markers in Gestational Diabetes. International Journal of Molecular Medicine, 43, 927-935.
https://doi.org/10.3892/ijmm.2018.4026
[37] Ornoy, A., Becker, M., Weinstein-Fudim, L. and Ergaz, Z. (2021) Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring: A Clinical Review. International Journal of Molecular Sciences, 22, Article 2965.
https://doi.org/10.3390/ijms22062965
[38] Kampmann, U., Knorr, S., Fuglsang, J. and Ovesen, P. (2019) Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. Journal of Diabetes Research, 2019, Article ID: 5320156.
https://doi.org/10.1155/2019/5320156
[39] Shi, Z., Zhao, C., Long, W., Ding, H. and Shen, R. (2015) Microarray Expression Profile Analysis of Long Non-Coding Rnas in Umbilical Cord Plasma Reveals Their Potential Role in Gestational Diabetes-Induced Macrosomia. Cellular Physiology and Biochemistry, 36, 542-554.
https://doi.org/10.1159/000430119
[40] Guiyu, S., Quan, N., Ruochen, W., Dan, W., Bingnan, C., Yuanyua, L., et al. (2021) LncRNA-SNX17 Promotes HTR-8/SVneo Proliferation and Invasion through miR-517a/IGF-1 in the Placenta of Diabetic Macrosomia. Reproductive Sciences, 29, 596-605.
https://doi.org/10.1007/s43032-021-00687-z
[41] Su, R., Wang, C., Feng, H., Lin, L., Liu, X., Wei, Y., et al. (2016) Alteration in Expression and Methylation of IGF2/H19 in Placenta and Umbilical Cord Blood Are Associated with Macrosomia Exposed to Intrauterine Hyperglycemia. PLOS ONE, 11, e0148399.
https://doi.org/10.1371/journal.pone.0148399
[42] Lu, J., Wu, J., Zhao, Z., Wang, J. and Chen, Z. (2018) Circulating Lncrna Serve as Fingerprint for Gestational Diabetes Mellitus Associated with Risk of Macrosomia. Cellular Physiology and Biochemistry, 48, 1012-1018.
https://doi.org/10.1159/000491969
[43] Hsu, M. and Coca-Prados, M. (1979) Electron Microscopic Evidence for the Circular Form of RNA in the Cytoplasm of Eukaryotic Cells. Nature, 280, 339-340.
https://doi.org/10.1038/280339a0
[44] Liu, C. and Chen, L. (2022) Circular RNAs: Characterization, Cellular Roles, and Applications. Cell, 185, 2016-2034.
https://doi.org/10.1016/j.cell.2022.04.021
[45] Yuan, Y., Gong, Y., Zhong, L., et al. (2022) Circular RNA Expression Profile and Competing Endogenous RNA Regulatory Network in Preeclampsia. Placenta, 119, 32-38.
https://doi.org/10.1016/j.placenta.2022.01.013
[46] Yuan, Y., Gong, Y., Zhong, L., Ding, X., Yang, Z., Su, X., et al. (2022) Circular RNA Expression Profile and Competing Endogenous RNA Regulatory Network in Preeclampsia. Placenta, 119, 32-38.
https://doi.org/10.1016/j.placenta.2022.01.013
[47] Hua, F. (2020) New Insights into Diabetes Mellitus and Its Complications: A Narrative Review. Annals of Translational Medicine, 8, 1689-1689.
https://doi.org/10.21037/atm-20-7243
[48] Liang, H., Hou, L., Wang, Q., et al. (2021) Serum hsa_circ_0054633 Is Elevated and Correlated with Clinical Features in Type 2 Diabetes Mellitus. Annals of Clinical and Laboratory Science, 51, 90-96.
[49] Yan, L., Feng, J., Cheng, F., Cui, X., Gao, L., Chen, Y., et al. (2018) Circular RNA Expression Profiles in Placental Villi from Women with Gestational Diabetes Mellitus. Biochemical and Biophysical Research Communications, 498, 743-750.
https://doi.org/10.1016/j.bbrc.2018.03.051
[50] Wang, H., She, G., Zhou, W., Liu, K., Miao, J. and Yu, B. (2019) Expression Profile of Circular Rnas in Placentas of Women with Gestational Diabetes Mellitus. Endocrine Journal, 66, 431-441.
https://doi.org/10.1507/endocrj.ej18-0291
[51] Tang, L., Li, P. and Li, L. (2020) Whole Transcriptome Expression Profiles in Placenta Samples from Women with Gestational Diabetes Mellitus. Journal of Diabetes Investigation, 11, 1307-1317.
https://doi.org/10.1111/jdi.13250
[52] Chen, H., Zhang, S., Wu, Y., Li, Z., Wang, D., Cai, S., et al. (2021) The Role of Circular RNA Circ_0008285 in Gestational Diabetes Mellitus by Regulating the Biological Functions of Trophoblasts. Biological Research, 54, Article No. 14.
https://doi.org/10.1186/s40659-021-00337-3