[1]
|
Tallquist, M.D. and Molkentin, J.D. (2017) Redefining the Identity of Cardiac Fibroblasts. Nature Reviews Cardiology, 14, 484-491. https://doi.org/10.1038/nrcardio.2017.57
|
[2]
|
Gourdie, R.G., Dimmeler, S. and Kohl, P. (2016) Novel Therapeutic Strategies Targeting Fibroblasts and Fibrosis in Heart Disease. Nature Reviews Drug Discovery, 15, 620-638. https://doi.org/10.1038/nrd.2016.89
|
[3]
|
Stockwell, B.R. (2022) Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell, 185, 2401-2421. https://doi.org/10.1016/j.cell.2022.06.003
|
[4]
|
Zhang, Y., Wang, Z., Lan, D., Zhao, J., Wang, L., Shao, X., et al. (2022) Microrna-24-3p Alleviates Cardiac Fibrosis by Suppressing Cardiac Fibroblasts Mitophagy via Downregulating PHB2. Pharmacological Research, 177, Article ID: 106124. https://doi.org/10.1016/j.phrs.2022.106124
|
[5]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. https://doi.org/10.1038/s41580-020-00324-8
|
[6]
|
Zhang, D., Ghosh, M.C. and Rouault, T.A. (2014) The Physiological Functions of Iron Regulatory Proteins in Iron Homeostasis—An Update. Frontiers in Pharmacology, 5, Article 124. https://doi.org/10.3389/fphar.2014.00124
|
[7]
|
Conrad, M. and Pratt, D.A. (2019) The Chemical Basis of Ferroptosis. Nature Chemical Biology, 15, 1137-1147. https://doi.org/10.1038/s41589-019-0408-1
|
[8]
|
Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S. and Stockwell, B.R. (2016) Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives Ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 113, E4966-E4975. https://doi.org/10.1073/pnas.1603244113
|
[9]
|
Gao, M., Monian, P., Quadri, N., Ramasamy, R. and Jiang, X. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308. https://doi.org/10.1016/j.molcel.2015.06.011
|
[10]
|
Tuo, Q., Lei, P., Jackman, K.A., Li, X., Xiong, H., Li, X., et al. (2017) Tau-Mediated Iron Export Prevents Ferroptotic Damage After Ischemic Stroke. Molecular Psychiatry, 22, 1520-1530. https://doi.org/10.1038/mp.2017.171
|
[11]
|
Fang, X., Cai, Z., Wang, H., Han, D., Cheng, Q., Zhang, P., et al. (2020) Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circulation Research, 127, 486-501. https://doi.org/10.1161/circresaha.120.316509
|
[12]
|
Lee, H., Zandkarimi, F., Zhang, Y., Meena, J.K., Kim, J., Zhuang, L., et al. (2020) Energy-Stress-Mediated AMPK Activation Inhibits Ferroptosis. Nature Cell Biology, 22, 225-234. https://doi.org/10.1038/s41556-020-0461-8
|
[13]
|
Dixon, S.J., Winter, G.E., Musavi, L.S., Lee, E.D., Snijder, B., Rebsamen, M., et al. (2015) Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 10, 1604-1609. https://doi.org/10.1021/acschembio.5b00245
|
[14]
|
Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2016) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98. https://doi.org/10.1038/nchembio.2239
|
[15]
|
Kuhn, H., Banthiya, S. and van Leyen, K. (2015) Mammalian Lipoxygenases and Their Biological Relevance. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1851, 308-330. https://doi.org/10.1016/j.bbalip.2014.10.002
|
[16]
|
Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., et al. (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 172, 409-422.e21. https://doi.org/10.1016/j.cell.2017.11.048
|
[17]
|
Onishi, M., Yamano, K., Sato, M., Matsuda, N. and Okamoto, K. (2021) Molecular Mechanisms and Physiological Functions of Mitophagy. The EMBO Journal, 40, e104705. https://doi.org/10.15252/embj.2020104705
|
[18]
|
Shiba-Fukushima, K., Arano, T., Matsumoto, G., Inoshita, T., Yoshida, S., Ishihama, Y., et al. (2014) Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering. PLOS Genetics, 10, e1004861. https://doi.org/10.1371/journal.pgen.1004861
|
[19]
|
Okatsu, K., Koyano, F., Kimura, M., Kosako, H., Saeki, Y., Tanaka, K., et al. (2015) Phosphorylated Ubiquitin Chain Is the Genuine Parkin Receptor. Journal of Cell Biology, 209, 111-128. https://doi.org/10.1083/jcb.201410050
|
[20]
|
Narendra, D., Tanaka, A., Suen, D. and Youle, R.J. (2008) Parkin Is Recruited Selectively to Impaired Mitochondria and Promotes Their Autophagy. The Journal of Cell Biology, 183, 795-803. https://doi.org/10.1083/jcb.200809125
|
[21]
|
Youle, R.J. and Narendra, D.P. (2010) Mechanisms of Mitophagy. Nature Reviews Molecular Cell Biology, 12, 9-14. https://doi.org/10.1038/nrm3028
|
[22]
|
Gao, F., Chen, D., Si, J., Hu, Q., Qin, Z., Fang, M., et al. (2015) The Mitochondrial Protein BNIP3L Is the Substrate of PARK2 and Mediates Mitophagy in PINK1/PARK2 Pathway. Human Molecular Genetics, 24, 2528-2538. https://doi.org/10.1093/hmg/ddv017
|
[23]
|
Ajoolabady, A., Chiong, M., Lavandero, S., Klionsky, D.J. and Ren, J. (2022) Mitophagy in Cardiovascular Diseases: Molecular Mechanisms, Pathogenesis, and Treatment. Trends in Molecular Medicine, 28, 836-849. https://doi.org/10.1016/j.molmed.2022.06.007
|
[24]
|
Stolz, A., Ernst, A. and Dikic, I. (2014) Cargo Recognition and Trafficking in Selective Autophagy. Nature Cell Biology, 16, 495-501. https://doi.org/10.1038/ncb2979
|
[25]
|
Wu, W., Li, W., Chen, H., Jiang, L., Zhu, R. and Feng, D. (2016) FUNDC1 Is a Novel Mitochondrial-Associated-Membrane (MAM) Protein Required for Hypoxia-Induced Mitochondrial Fission and Mitophagy. Autophagy, 12, 1675-1676. https://doi.org/10.1080/15548627.2016.1193656
|
[26]
|
Pei, Z., Liu, Y., Liu, S., Jin, W., Luo, Y., Sun, M., et al. (2021) FUNDC1 Insufficiency Sensitizes High Fat Diet Intake-Induced Cardiac Remodeling and Contractile Anomaly through ACSL4-Mediated Ferroptosis. Metabolism, 122, Article ID: 154840. https://doi.org/10.1016/j.metabol.2021.154840
|
[27]
|
Liang, X., Wang, S., Wang, L., Ceylan, A.F., Ren, J. and Zhang, Y. (2020) Mitophagy Inhibitor Liensinine Suppresses Doxorubicin-Induced Cardiotoxicity through Inhibition of Drp1-Mediated Maladaptive Mitochondrial Fission. Pharmacological Research, 157, Article ID: 104846. https://doi.org/10.1016/j.phrs.2020.104846
|
[28]
|
Drysdale, J., Arosio, P., Invernizzi, R., Cazzola, M., Volz, A., Corsi, B., et al. (2002) Mitochondrial Ferritin: A New Player in Iron Metabolism. Blood Cells, Molecules, and Diseases, 29, 376-383. https://doi.org/10.1006/bcmd.2002.0577
|
[29]
|
Wang, X., Ma, H., Sun, J., Zheng, T., Zhao, P., Li, H., et al. (2021) Mitochondrial Ferritin Deficiency Promotes Osteoblastic Ferroptosis via Mitophagy in Type 2 Diabetic Osteoporosis. Biological Trace Element Research, 200, 298-307. https://doi.org/10.1007/s12011-021-02627-z
|
[30]
|
Liu, M., Fan, Y., Li, D., Han, B., Meng, Y., Chen, F., et al. (2021) Ferroptosis Inducer Erastin Sensitizes NSCLC Cells to Celastrol through Activation of the Ros-Mitochondrial Fission-Mitophagy Axis. Molecular Oncology, 15, 2084-2105. https://doi.org/10.1002/1878-0261.12936
|
[31]
|
Basit, F., van Oppen, L.M., Schöckel, L., Bossenbroek, H.M., van Emst-de Vries, S.E., Hermeling, J.C., et al. (2017) Mitochondrial Complex I Inhibition Triggers a Mitophagy-Dependent ROS Increase Leading to Necroptosis and Ferroptosis in Melanoma Cells. Cell Death & Disease, 8, e2716. https://doi.org/10.1038/cddis.2017.133
|
[32]
|
Rademaker, G., Boumahd, Y., Peiffer, R., Anania, S., Wissocq, T., Liégeois, M., et al. (2022) Myoferlin Targeting Triggers Mitophagy and Primes Ferroptosis in Pancreatic Cancer Cells. Redox Biology, 53, Article ID: 102324. https://doi.org/10.1016/j.redox.2022.102324
|
[33]
|
Yu, F., Zhang, Q., Liu, H., Liu, J., Yang, S., Luo, X., et al. (2022) Dynamic O-Glcnacylation Coordinates Ferritinophagy and Mitophagy to Activate Ferroptosis. Cell Discovery, 8, Article No. 40. https://doi.org/10.1038/s41421-022-00390-6
|
[34]
|
Li, Y., Wang, X., Huang, Z., Zhou, Y., Xia, J., Hu, W., et al. (2021) CISD3 Inhibition Drives Cystine-Deprivation Induced Ferroptosis. Cell Death & Disease, 12, Article No. 839. https://doi.org/10.1038/s41419-021-04128-2
|
[35]
|
Su, L., Zhang, J., Gomez, H., Kellum, J.A. and Peng, Z. (2022) Mitochondria ROS and Mitophagy in Acute Kidney Injury. Autophagy, 19, 401-414. https://doi.org/10.1080/15548627.2022.2084862
|
[36]
|
Li, Q., Zhao, Z., Zhou, X., Yan, Y., Shi, L., Chen, J., et al. (2022) Ferroptosis: The Potential Target in Heart Failure with Preserved Ejection Fraction. Cells, 11, Article 2842. https://doi.org/10.3390/cells11182842
|
[37]
|
Chen, X., Xu, S., Zhao, C. and Liu, B. (2019) Role of TLR4/NADPH Oxidase 4 Pathway in Promoting Cell Death through Autophagy and Ferroptosis during Heart Failure. Biochemical and Biophysical Research Communications, 516, 37-43. https://doi.org/10.1016/j.bbrc.2019.06.015
|
[38]
|
Wang, J., Deng, B., Liu, Q., Huang, Y., Chen, W., Li, J., et al. (2020) Pyroptosis and Ferroptosis Induced by Mixed Lineage Kinase 3 (MLK3) Signaling in Cardiomyocytes Are Essential for Myocardial Fibrosis in Response to Pressure Overload. Cell Death & Disease, 11, Article No. 574. https://doi.org/10.1038/s41419-020-02777-3
|
[39]
|
Zhang, Z., Tang, J., Song, J., Xie, M., Liu, Y., Dong, Z., et al. (2022) Elabela Alleviates Ferroptosis, Myocardial Remodeling, Fibrosis and Heart Dysfunction in Hypertensive Mice by Modulating the IL-6/STAT3/GPX4 Signaling. Free Radical Biology and Medicine, 181, 130-142. https://doi.org/10.1016/j.freeradbiomed.2022.01.020
|
[40]
|
Zhang, X., Zheng, C., Gao, Z., Chen, H., Li, K., Wang, L., et al. (2021) SLC7A11/xCT Prevents Cardiac Hypertrophy by Inhibiting Ferroptosis. Cardiovascular Drugs and Therapy, 36, 437-447. https://doi.org/10.1007/s10557-021-07220-z
|
[41]
|
Park, T., Park, J.H., Lee, G.S., Lee, J., Shin, J.H., Kim, M.W., et al. (2019) Quantitative Proteomic Analyses Reveal That GPX4 Downregulation during Myocardial Infarction Contributes to Ferroptosis in Cardiomyocytes. Cell Death & Disease, 10, Article No. 835. https://doi.org/10.1038/s41419-019-2061-8
|
[42]
|
Li, X., Ma, N., Xu, J., Zhang, Y., Yang, P., Su, X., et al. (2021) Targeting Ferroptosis: Pathological Mechanism and Treatment of Ischemia-Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 1587922. https://doi.org/10.1155/2021/1587922
|
[43]
|
Baba, Y., Higa, J.K., Shimada, B.K., Horiuchi, K.M., Suhara, T., Kobayashi, M., et al. (2018) Protective Effects of the Mechanistic Target of Rapamycin against Excess Iron and Ferroptosis in Cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology, 314, H659-H668. https://doi.org/10.1152/ajpheart.00452.2017
|
[44]
|
Hwang, J., Park, J., Park, B., Kim, H., Kim, J., Sim, W., et al. (2021) Histochrome Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting Ferroptosis-Induced Cardiomyocyte Death. Antioxidants, 10, Article 1624. https://doi.org/10.3390/antiox10101624
|
[45]
|
Tadokoro, T., Ikeda, M., Ide, T., Deguchi, H., Ikeda, S., Okabe, K., et al. (2020) Mitochondria-Dependent Ferroptosis Plays a Pivotal Role in Doxorubicin Cardiotoxicity. JCI Insight, 5, [page]. https://doi.org/10.1172/jci.insight.132747
|
[46]
|
Li, D., Liu, X., Pi, W., Zhang, Y., Yu, L., Xu, C., et al. (2022) Fisetin Attenuates Doxorubicin-Induced Cardiomyopathy in Vivo and in Vitro by Inhibiting Ferroptosis through Sirt1/nrf2 Signaling Pathway Activation. Frontiers in Pharmacology, 12, Article 808480. https://doi.org/10.3389/fphar.2021.808480
|
[47]
|
Quagliariello, V., De Laurentiis, M., Rea, D., Barbieri, A., Monti, M.G., Carbone, A., et al. (2021) The SGLT-2 Inhibitor Empagliflozin Improves Myocardial Strain, Reduces Cardiac Fibrosis and Pro-Inflammatory Cytokines in Non-Diabetic Mice Treated with Doxorubicin. Cardiovascular Diabetology, 20, Article 150. https://doi.org/10.1186/s12933-021-01346-y
|
[48]
|
Gibb, A.A., Lazaropoulos, M.P. and Elrod, J.W. (2020) Myofibroblasts and Fibrosis. Circulation Research, 127, 427-447. https://doi.org/10.1161/circresaha.120.316958
|
[49]
|
Taegtmeyer, H. (1994) Energy Metabolism of the Heart: From Basic Concepts to Clinical Applications Applications. Current Problems in Cardiology, 19, 61-86. https://doi.org/10.1016/0146-2806(94)90008-6
|
[50]
|
Lu, H., Tian, A., Wu, J., Yang, C., Xing, R., Jia, P., et al. (2014) Danshensu Inhibits Β-Adrenergic Receptors-Mediated Cardiac Fibrosis by Ros/p38 MAPK Axis. Biological and Pharmaceutical Bulletin, 37, 961-967. https://doi.org/10.1248/bpb.b13-00921
|
[51]
|
Li, X., Zhang, W., Cao, Q., Wang, Z., Zhao, M., Xu, L., et al. (2020) Mitochondrial Dysfunction in Fibrotic Diseases. Cell Death Discovery, 6, Article No. 80. https://doi.org/10.1038/s41420-020-00316-9
|
[52]
|
Kurita, Y., Araya, J., Minagawa, S., Hara, H., Ichikawa, A., Saito, N., et al. (2017) Pirfenidone Inhibits Myofibroblast Differentiation and Lung Fibrosis Development during Insufficient Mitophagy. Respiratory Research, 18, Article No. 114. https://doi.org/10.1186/s12931-017-0600-3
|
[53]
|
Guan, C., Zhang, H., Wang, Y., Chen, Z., Deng, B., Qiu, Q., et al. (2021) The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5572088. https://doi.org/10.1155/2021/5572088
|
[54]
|
Suliman, H.B., Keenan, J.E. and Piantadosi, C.A. (2017) Mitochondrial Quality-Control Dysregulation in condItional HO-1–/– Mice. JCI Insight, 2, e89676. https://doi.org/10.1172/jci.insight.89676
|
[55]
|
Wang, J., Chen, P., Cao, Q., Wang, W. and Chang, X. (2022) Traditional Chinese Medicine Ginseng Dingzhi Decoction Ameliorates Myocardial Fibrosis and High Glucose-Induced Cardiomyocyte Injury by Regulating Intestinal Flora and Mitochondrial Dysfunction. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9205908. https://doi.org/10.1155/2022/9205908
|
[56]
|
Zhang, X., Li, Z., Eirin, A., Ebrahimi, B., Pawar, A.S., Zhu, X., et al. (2015) Cardiac Metabolic Alterations in Hypertensive Obese Pigs. Hypertension, 66, 430-436. https://doi.org/10.1161/hypertensionaha.115.05478
|