铁死亡与线粒体自噬在心肌纤维化中的研究进展
Research Progress on Ferroptosis and Mitophagy in Myocardial Fibrosis
DOI: 10.12677/acm.2024.1461926, PDF, HTML, XML,   
作者: 刘一丹, 杨百元*:成都市第七人民医院(成都医学院附属肿瘤医院)神经内科,四川 成都
关键词: 铁死亡线粒体自噬心肌纤维化Ferroptosis Mitophagy Myocardial Fibrosis
摘要: 心肌纤维化是心脏结构重构的主要原因,可引起心力衰竭、心律失常。铁死亡及线粒体自噬自提出以来已被发现参与多种疾病的发生发展过程,二者在氧化还原稳态、铁稳态等方面存在机制交叉点。初步证据提示线粒体自噬是铁死亡的上游调节点,也有研究表明铁死亡及线粒体自噬均在心肌纤维化中存在重要作用。本文对铁死亡与线粒体自噬在心肌纤维化中的研究进展作一综述。
Abstract: Myocardial fibrosis is a primary cause of cardiac structural remodeling, leading to heart failure and arrhythmia. Since the proposal of ferroptosis and mitophagy, both have been found to participate in the development of various diseases, with intersecting mechanisms in areas such as redox homeostasis and iron homeostasis. Preliminary evidence suggests that mitophagy is an upstream regulatory node of ferroptosis. Research indicates that both ferroptosis and mitophagy play significant roles in myocardial fibrosis. Herein, we review the research progress on the roles of ferroptosis and mitophagy in myocardial fibrosis.
文章引用:刘一丹, 杨百元. 铁死亡与线粒体自噬在心肌纤维化中的研究进展[J]. 临床医学进展, 2024, 14(6): 1388-1396. https://doi.org/10.12677/acm.2024.1461926

1. 引言

心肌纤维化(Cardiac fibrosis)是指以胶原纤维为主的细胞外基质(Extracellular matrix, ECM)蛋白在心脏间质中过度沉积。其作为心肌梗死、肥厚型心肌病、糖尿病性心肌病和扩张型心肌病等多种心脏疾病的共同病理生理学基础,与心力衰竭、恶性心律失常的发生密切相关[1]。在损伤或应激情况下,心脏常驻成纤维细胞转分化为肌成纤维细胞,后者的持续激活是心脏适应性不良重构和进行性心功能衰退的主要原因[2]。铁死亡自2012年被提出以来受到了科学界的广泛关注。这种特殊类型的细胞死亡在多种疾病当中均被证实发挥着重要作用[3]。线粒体自噬是一种清除多余或受损线粒体的选择性自噬过程。它在调节细胞中线粒体的数量和质量方面起着关键作用,并参与许多生理和病理过程[4]。铁死亡与线粒体自噬的机制环节均涉及到氧化还原稳态、铁稳态,彼此相互联系,初步的研究表明线粒体自噬对铁死亡存在上游调节作用,参与影响细胞死亡结局。靶向线粒体自噬和铁死亡的治疗模式具有广阔的应用前景。当前证据提示铁死亡及线粒体自噬都在心脏纤维化中承担了重要角色。本文就铁死亡及线粒体自噬的相互联系,及其在心肌纤维化中的研究进展作一综述。

2. 铁死亡与线粒体自噬

2.1. 铁死亡的定义及机制

铁死亡是指由铁依赖性的磷脂过氧化驱动,同时受到氧化还原稳态、铁稳态、线粒体活性、能量代谢以及多种信号通路调控的一种特殊细胞死亡模式[5]。其中由细胞代谢和氧化还原稳态失衡导致的脂质过氧化级联反应是铁死亡发生的核心环节,磷脂氢过氧化物(phospholipid hydroperoxides, PLOOHs)的形成是铁死亡的直接原因。铁死亡主要发生机制如下:

2.1.1. 铁代谢

正如铁死亡名字的由来,铁代谢失衡可推动铁死亡发生。正常情况下,铁调节蛋白IRP1和IRP2通过影响铁储存、释放、输入、输出相关基因的转录后调控参与维持细胞内铁稳态[6]。铁死亡过程当中,非酶促铁依赖性芬顿(Fenton)链式反应可参与PLOOHs的形成,同时后者也与亚铁离子和三价铁离子反应,分别产生PLO和PLOO自由基,进一步推动过氧化链式反应,促进铁死亡[7]。铁依赖性酶如花生四烯酸脂氧合酶(ALOXs)也参与PLOOHs的形成[8]。此外,铁对于基于氧化还原的代谢过程是必不可少的,与细胞活性氧产生密切相关[3]。铁蛋白自噬[9]以及转铁蛋白功能增强[10]均可增加细胞内铁离子浓度从而诱发铁死亡。小鼠模型中铁蛋白重链的基因敲除也可通过诱发铁死亡的方式促进心肌病发生[11]

2.1.2. 脂质氧化代谢

不受控的脂质过氧化级联反应可直接破坏细胞膜完整性从而导致细胞死亡[3]。含多不饱和脂肪酸(PUFA)的膜磷脂是铁死亡脂质过氧化的主要底物。其相邻C=C双键之间存在异常弱的C-H键,因此对过氧化高度敏感[3]。PUFA的生物合成状态可改变细胞对铁死亡的敏感性。例如能量应激可通过控制乙酰辅酶A羧化酶(ACC)活性来限制PUFA生物合成从而增加铁死亡抗性[12]。酰基辅酶A (CoA)合成酶长链家族成员4 (ACSL4)和溶血磷脂酰胆碱酰基转移酶3 (LPCAT3)可激活并整合PUFA如花生四烯酸(AA)进膜磷脂当中,从而形成脂质过氧化底物[13]。基因敲除或者药物抑制ACSL4后可使磷脂中长链PUFA尾转换成单不饱和脂肪酸酰基(MUFA)尾,从而可减少细胞铁死亡[14]。此外,某些脂氧合酶(LOXs)可以直接氧化生物膜中的PUFA和含PUFA的脂质,从而也参与介导了铁死亡[15]

2.1.3. GPX4依赖性及非依赖性抗氧化系统

系统xc-GSH-GPX4是参与铁死亡负调控的关键通路。早期抗肿瘤药物研究便发现化合物erastin和RSL3可通过分别抑制系统xc-和GPX4从而诱导铁死亡[3]。GPX4是一种硒蛋白酶,是哺乳动物当中催化PLOOHs还原的主要分子,当GPX4受抑时,会导致胞内PLOOHs过度积累而诱发铁死亡[5]。系统xc-可1:1通过交换谷氨酸的方式将胞外半胱氨酸转移至胞内,后者参与谷胱甘肽(GSH)的合成,而GSH是GPX4功能发挥的重要辅因子[16]。系统xc-、GSH、GPX4的抑制都将诱发铁死亡。除系统xc-GSH-GPX4通路外,非GPX4依赖抗氧化系统也在铁死亡中发挥着重要调控作用。铁死亡抑制蛋白1 (FSP1)/辅酶Q10、二氢乳酸脱氢酶(DHODH)和GTP环水解酶1 (GCH1)/四氢生物蝶呤(BH4)均可独立于GPX4发挥抑制铁死亡作用[3]

2.2. 线粒体自噬的定义及机制

线粒体自噬是指细胞自噬系统靶向受损线粒体,形成具备双模结构的自噬小体,并将其输送到溶酶体进行降解,从而实现线粒体质量控制的生物学过程[17]。线粒体的合成及动力学(融合、裂变)和线粒体自噬共同参与调节细胞线粒体数量及质量,从而构成了代谢和信号调节的关键点。线粒体自噬的分子机制如下:

2.2.1. PINK1和PRKN通路

PTEN诱导激酶1 (PINK1)和parkin RBR E3泛素蛋白连接酶(PRKN)在线粒体自噬激活过程中发挥了重要作用。当线粒体膜电位降低(去极化)时,PINK1的降解减少并在线粒体外膜(Outer mitochondrial membrane, OMM)上募集,随后通过在ser65位点上将与OMM相连的泛素磷酸化来募集并激活PRKN [18] [19]。激活的PRKN可催化线粒体外膜(OMM)蛋白的泛素化,形成泛素链并反过来进一步募集PRKN,形成正反馈的级联放大信号[20] [21]。PINK1和PRKN之间的复合物导致线粒体外膜被泛素链广泛覆盖,泛素链作为信号分子可被自噬系统识别,从而诱发线粒体自噬,清除受损线粒体。此外,PRKN也可泛素化线粒体膜蛋白BNIP3L,从而募集被自噬受体NBR1和LC3包被的囊泡到线粒体参与自噬[22]

2.2.2. 线粒体自噬受体

线粒体自噬受体是参与受损或者去极化线粒体分子识别的一类蛋白质,包括TAX1BP1、CALCOCO2、OPTN、SQSTM1、NBR1、FUNDC1等[23]。在结构上,线粒体自噬受体具有UBD (泛素结合区)和LIR (LC3相互作用区)结构域;它们分别与受损线粒体上的泛素结合,并与自噬体膜中的微管相关蛋白1轻链3β (MAP1LC3B)或GABA型受体相关蛋白(GABARAP)结合,从何构成受损线粒体与自噬体之间的桥梁[24]。线粒体蛋白FUNDC1在低氧诱导的线粒体自噬中便发挥了重要作用。在FUNDC1介导的线粒体自噬中,PGAM5磷酸酶使FUNDC1在Ser13位点去磷酸化,从而促进FUNDC1与MAP1LC3B的相互作用,诱发线粒体自噬[25] [26]。BNIP3在其N末端区域也具有LIR基序可以与自噬受体上的LC3相结合,而这个区域的突变可阻止线粒体自噬,证实了其在线粒体自噬当中的重要作用。

2.3. 铁死亡与线粒体自噬的相互关联

丰富的研究表明,线粒体自噬通过清除胞内受损线粒体,广泛参与了细胞凋亡、坏死和其他死亡方式的终末调节过程[27]。线粒体是合成细胞内血红素和Fe/S蛋白复合物的场所,这需要大量的铁离子,同时线粒体在产生ATP的过程中也会生成ROS,而后者是铁死亡脂质过氧化的关键因子之一。此外,线粒体自噬通过对受损线粒体的降解也可能会导致细胞内铁过载,从而通过芬顿反应参与脂质过氧化连锁反应,诱导铁死亡。目前也有初步的证据表明线粒体自噬参与了铁死亡的发生,并在多种疾病中发挥重要作用。线粒体铁蛋白(FtMt)是铁离子在线粒体中的储存载体,其结构类似于铁蛋白重链,也具有亚铁氧化酶活性,能截留线粒体中过量的铁离子,减少氧自由基的产生[28]。Wang等人在糖尿病骨质疏松模型当中发现,下调FtMt可通过ROS/PINK1/Parkin途径诱导成骨细胞中线粒体自噬,并进一步诱发了铁死亡发生。在用线粒体自噬诱导剂——羰基氰化物–间氯苯肼(CCCP)激活线粒体自噬后,成骨细胞的铁死亡显著增加,从而促进骨质疏松发病[29]。也有研究表明erastin,一种经典的铁死亡诱导剂,在非小细胞肺癌模型当中可使线粒体膜去极化,并激活ROS–线粒体裂变–线粒体自噬信号通路来促进肿瘤细胞铁死亡,具有潜在的治疗作用[30]。与此类似,在另外一项关于黑色素瘤细胞的研究中,研究人员发现BAY对线粒体复合物I的抑制将引发线粒体自噬依赖性的ROS累积,从而促进细胞铁死亡[31]。BAY可使线粒体膜电位(Δψ)去极化,从而增加细胞ROS水平,激活脂质过氧化链式反应,降低谷胱甘肽水平,导致铁死亡,而这些效应同时也伴随着线粒体通透性转换孔(mPTP)的开放增加以及线粒体自噬,提示了线粒体自噬以及铁死亡在ROS增加的共同事件当中对细胞死亡结局具有协同作用。此外,该研究也发现线粒体自噬关键蛋白分子ATG5或PINK1的抑制可减少BAY引起的ROS增加,提示胞内ROS增加发生于线粒体自噬之后,而线粒体自噬相关ROS增加是铁死亡的上游机制。也有研究发现在胰腺肿瘤细胞当中靶向myoferlin的药物可触发线粒体自噬,并导致胞内ROS累积,最终导致脂质过氧化和铁死亡。此外线粒体自噬的增加也将从铁硫簇中释放游离铁离子,造成铁池不稳定,诱发铁死亡[32]

另外有研究表明电压依赖性阴离子通道(VDAC),作为线粒体外膜上的MTP通道的主要调控因子在线粒体自噬与铁死亡的交互中发挥了重要作用。抑制VDAC将引起线粒体内三羧酸循环受抑,而后者具备减轻线粒体膜电位超极化和脂质过氧化物累积的作用,这将引起线粒体自噬依赖性ROS增加,并诱发铁死亡[31]。O-葡萄糖酰化(O-GlcNAcylation)是一种重要的翻译后修饰类型,可调节从基因转录、翻译、蛋白质定位、相互作用到降解的基本细胞过程。Yu等人发现抑制O-葡萄糖酰化可通过促进线粒体自噬以及铁蛋白自噬来诱导细胞铁死亡。与此相反,同时抑制铁蛋白自噬以及线粒体自噬后可使细胞免于铁死亡[33]

与上述研究结果相反,另外一些研究则显示线粒体自噬对铁死亡存在保护作用。Li等人的研究中发现,在CISD3抑制诱导铁死亡的肿瘤细胞模型中,提前应用线粒体抗氧化剂MitoQ处理后,线粒体自噬被激活,可清除细胞内受损线粒体,减少ROS的生成从而减少铁死亡,体现了线粒体自噬对细胞的保护效应[34]。早期线粒体自噬的激活可以清除受损线粒体,减少ROS,从而利于细胞存活,但是过度持续的线粒体损伤也可能导致病理性的线粒体自噬,并导致线粒体自噬依赖性ROS增加,从而促进细胞死亡和组织损伤[35]。因此尚且需要进一步的研究来验证线粒体自噬对铁死亡的调节作用及机制交互。

3. 铁死亡在心肌纤维化中的作用

心力衰竭是心肌纤维化的临床结局,具有较高的致死率和致残率。充分的证据表明心力衰竭中铁死亡增强,心力衰竭小鼠模型中的心肌组织可观察到显著的心肌纤维化并伴随有铁和丙二醛(脂质过氧化的主要产物)的过量聚积,提示铁死亡或在心肌纤维化、心力衰竭中发挥重要作用[36]。有证据表明铁死亡可协同自噬激活介导的细胞死亡通过TLR4-NOX4途径促进心力衰竭发展[37]。Wang等在小鼠心力衰竭模型中发现混合谱系激酶3 (MLK3)可通过心肌细胞中的JNK/p53信号通路诱导铁死亡并介导心肌纤维化,而MiR-351负向调节MLK3的表达,从而在压力超负荷所致心力衰竭的心室重构中发挥保护作用[38]。在另一项关于压力超负荷后心肌纤维化的研究中,研究人员证明elabela和Fer-1可通过调节IL-6/STAT3/GPX4信号通路减轻血管紧张素II介导的心脏微血管内皮细胞的铁死亡以及随后的心肌纤维化[39]。另一项研究也表明铁死亡抑制剂xCT可通过抑制铁死亡减轻血管紧张素II诱导的心脏纤维化和病理性心脏重塑[40]

此外心肌梗死、心肌缺血再灌注损伤也是心肌纤维化的另一重要原因。目前已有充分的证据表明铁死亡在心肌梗死、心脏缺血再灌注损伤中介导了心肌细胞死亡并促进心肌纤维化。心肌梗死早中期GPX4的转录水平显著下调,这导致脂质过氧化物积累和心肌细胞铁死亡[41]。在心肌缺血和早期再灌注期间,铁蛋白降解将释放游离铁并促进Fenton反应,导致氧化损伤和心肌细胞铁死亡。研究也表明抑制谷氨酰胺降解或应用其它铁死亡抑制剂如Fer-2、去铁胺等铁死亡抑制剂可减少心脏缺血再灌注损伤[42]。与此同时,靶向铁死亡的药物在心肌缺血灌注损伤的动物实验中也显示出抗纤维化作用。右美托嘧啶是一种短效麻醉剂,可通过Nrf2途径抑制铁死亡,从而减轻缺血再灌注损伤诱导的心肌纤维化[43]。也有研究表明静脉注射组织色素(histochrome)可显著减轻心脏纤维化。组织色素治疗通过激活Nrf2途径下调细胞内和线粒体ROS水平,同时参与维持细胞内GSH水平和上调GPX4的活性来抑制erastin和RSL3诱导的心肌细胞铁死亡,减轻心肌纤维化[44]

多柔比星是一种在肿瘤患者当中广泛应用的化疗药物,其具有很强的心脏毒性,以引起心脏间质性纤维化为主。多柔比星可通过线粒体中的DOX-Fe2+复合物降低细胞中GPX4含量,增加脂质过氧化物来诱导线粒体依赖性铁死亡[45]。Fisetin是一种具有心脏保护作用的天然类黄酮,在多柔比星诱导的心肌病大鼠和H9c2细胞模型中可通过SIRT1/Nrf2信号通路显著改善心肌纤维化和心肌细胞的死亡[46]。在经多柔比星处理的非糖尿病小鼠模型当中,SGLT-2抑制剂恩格列净可通过NLRP3-MyD88相关通路抑制铁死亡,减轻心肌纤维化,从而改善心功能[47]

活化的肌成纤维细胞可以分泌大量I型胶原、III型胶原等,从而造成细胞外基质过度沉积,直接导致心肌纤维化[48]。已有充分的证据表明在适应不良性心室重构当中活化的肌成纤维细胞当中凋亡受抑[48],铁死亡是否也在肌成纤维细胞中受抑并参与肌成纤维细胞的持续活化尚不明确。目前已存的研究多着眼于铁死亡通过介导心肌细胞死亡而引起心肌纤维化,尚缺乏铁死亡在心脏常驻成纤维细胞及活化的肌成纤维细胞中的作用研究。尚需进一步研究探索铁死亡影响心肌纤维化的具体机制。

4. 线粒体自噬与心肌纤维化

心脏高度依赖线粒体代谢来满足其巨大的能量需求。心肌线粒体占心肌细胞体积的30%,通过氧化磷酸化作用,以脂肪酸为主要底物,每天合成6~7千克ATP [49]。同时线粒体也是产生ROS的主要场所,线粒体中呼吸链复合物I和III的电子逃逸是 O 2 的主要来源。而ROS在成纤维化细胞活化、分化中发挥着重要作用[48]。在大鼠心脏成纤维细胞中,β-肾上腺素能刺激可增加ROS的产生和p38-MAPK的激活/磷酸化,从而促进成纤维细胞增殖和胶原产生[50]。因此线粒体功能障碍是心肌纤维化的一个重要原因。而线粒体自噬可以清除受损的线粒体和其产生的过量ROS,纠正线粒体功能障碍,从而抑制纤维化进展。在肾、肺纤维化模型中也都观察到线粒体自噬受损[51]。在肺纤维化模型中,抑制可激活线粒体自噬的PDGFR/PI3K/AKT信号通路后ROS产量增加,同时也增强了肌成纤维细胞的分化和增殖[52]

类似的,有研究发现敲除ADAM17可通过抑制内质网应激和激活线粒体自噬来抑制肌成纤维细胞的激活,从而发挥改善心脏纤维化和心功能的作用[53]。研究也表明HO-1系统可通过调节PINK1/PARK2通路的NRF-1依赖性表达来激活线粒体自噬相关转录基因,并参与氧化损伤后的线粒体质量控制,并可防止氧化应激所引起的心肌纤维化[54]。Atg5的缺乏可导致巨噬细胞的线粒体自噬减少,使得ROS产生增多和NF-κB激活,通过促进炎症反应间接导致心肌纤维化。传统中药人参定芝汤也被证明可通过TMBIM6增加心肌细胞中的线粒体自噬,减少氧化应激的不利作用,从而减轻心肌纤维化[55]

与上述研究结果相反,部分研究也观察到在心脏中线粒体自噬对心肌纤维化呈现出促进作用。Zhang等[4]发现AngII处理的小鼠心脏成纤维细胞中的自噬小体及标记物PINK1、PRKN增加,提示AngII增加成纤维细胞的线粒体自噬。而MiRNA-24-3p可以通过下调PHB2来抑制心脏常驻成纤维细胞中的线粒体自噬从而减轻心肌纤维化。另一项研究也观察到心肌纤维化与线粒体自噬程度呈正相关[56]。线粒体自噬在心肌纤维化中的作用可能存在抑制和促进两面性,这可能是因为线粒体自噬适度激活可发挥清除ROS作用,而过度激活反增加胞内ROS积聚,其具体机制尚待进一步研究阐明。

5. 总结与展望

铁死亡与线粒体自噬自被提出以来,已被证明在多种生理及病理过程中承担重要角色,目前其在心肌纤维化中的作用也越来越受到关注。鉴于铁死亡与线粒体自噬在氧化还原稳态、铁稳态等方面存在机制交叉点,目前已在肿瘤领域证明了它们之间的相互关联。即线粒体自噬或是铁死亡的重要上游调节点,并参与影响细胞的死亡结局。而线粒体自噬及铁死亡在心肌纤维化中的联合作用,以及铁死亡、线粒体自噬是否在肌成纤维细胞当中受抑,从而参与维持肌成纤维细胞持续激活并促进心肌纤维化,尚待进一步研究阐明。

NOTES

*通讯作者。

参考文献

[1] Tallquist, M.D. and Molkentin, J.D. (2017) Redefining the Identity of Cardiac Fibroblasts. Nature Reviews Cardiology, 14, 484-491.
https://doi.org/10.1038/nrcardio.2017.57
[2] Gourdie, R.G., Dimmeler, S. and Kohl, P. (2016) Novel Therapeutic Strategies Targeting Fibroblasts and Fibrosis in Heart Disease. Nature Reviews Drug Discovery, 15, 620-638.
https://doi.org/10.1038/nrd.2016.89
[3] Stockwell, B.R. (2022) Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell, 185, 2401-2421.
https://doi.org/10.1016/j.cell.2022.06.003
[4] Zhang, Y., Wang, Z., Lan, D., Zhao, J., Wang, L., Shao, X., et al. (2022) Microrna-24-3p Alleviates Cardiac Fibrosis by Suppressing Cardiac Fibroblasts Mitophagy via Downregulating PHB2. Pharmacological Research, 177, Article ID: 106124.
https://doi.org/10.1016/j.phrs.2022.106124
[5] Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282.
https://doi.org/10.1038/s41580-020-00324-8
[6] Zhang, D., Ghosh, M.C. and Rouault, T.A. (2014) The Physiological Functions of Iron Regulatory Proteins in Iron Homeostasis—An Update. Frontiers in Pharmacology, 5, Article 124.
https://doi.org/10.3389/fphar.2014.00124
[7] Conrad, M. and Pratt, D.A. (2019) The Chemical Basis of Ferroptosis. Nature Chemical Biology, 15, 1137-1147.
https://doi.org/10.1038/s41589-019-0408-1
[8] Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S. and Stockwell, B.R. (2016) Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives Ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 113, E4966-E4975.
https://doi.org/10.1073/pnas.1603244113
[9] Gao, M., Monian, P., Quadri, N., Ramasamy, R. and Jiang, X. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308.
https://doi.org/10.1016/j.molcel.2015.06.011
[10] Tuo, Q., Lei, P., Jackman, K.A., Li, X., Xiong, H., Li, X., et al. (2017) Tau-Mediated Iron Export Prevents Ferroptotic Damage After Ischemic Stroke. Molecular Psychiatry, 22, 1520-1530.
https://doi.org/10.1038/mp.2017.171
[11] Fang, X., Cai, Z., Wang, H., Han, D., Cheng, Q., Zhang, P., et al. (2020) Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circulation Research, 127, 486-501.
https://doi.org/10.1161/circresaha.120.316509
[12] Lee, H., Zandkarimi, F., Zhang, Y., Meena, J.K., Kim, J., Zhuang, L., et al. (2020) Energy-Stress-Mediated AMPK Activation Inhibits Ferroptosis. Nature Cell Biology, 22, 225-234.
https://doi.org/10.1038/s41556-020-0461-8
[13] Dixon, S.J., Winter, G.E., Musavi, L.S., Lee, E.D., Snijder, B., Rebsamen, M., et al. (2015) Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 10, 1604-1609.
https://doi.org/10.1021/acschembio.5b00245
[14] Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2016) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98.
https://doi.org/10.1038/nchembio.2239
[15] Kuhn, H., Banthiya, S. and van Leyen, K. (2015) Mammalian Lipoxygenases and Their Biological Relevance. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1851, 308-330.
https://doi.org/10.1016/j.bbalip.2014.10.002
[16] Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., et al. (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 172, 409-422.e21.
https://doi.org/10.1016/j.cell.2017.11.048
[17] Onishi, M., Yamano, K., Sato, M., Matsuda, N. and Okamoto, K. (2021) Molecular Mechanisms and Physiological Functions of Mitophagy. The EMBO Journal, 40, e104705.
https://doi.org/10.15252/embj.2020104705
[18] Shiba-Fukushima, K., Arano, T., Matsumoto, G., Inoshita, T., Yoshida, S., Ishihama, Y., et al. (2014) Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering. PLOS Genetics, 10, e1004861.
https://doi.org/10.1371/journal.pgen.1004861
[19] Okatsu, K., Koyano, F., Kimura, M., Kosako, H., Saeki, Y., Tanaka, K., et al. (2015) Phosphorylated Ubiquitin Chain Is the Genuine Parkin Receptor. Journal of Cell Biology, 209, 111-128.
https://doi.org/10.1083/jcb.201410050
[20] Narendra, D., Tanaka, A., Suen, D. and Youle, R.J. (2008) Parkin Is Recruited Selectively to Impaired Mitochondria and Promotes Their Autophagy. The Journal of Cell Biology, 183, 795-803.
https://doi.org/10.1083/jcb.200809125
[21] Youle, R.J. and Narendra, D.P. (2010) Mechanisms of Mitophagy. Nature Reviews Molecular Cell Biology, 12, 9-14.
https://doi.org/10.1038/nrm3028
[22] Gao, F., Chen, D., Si, J., Hu, Q., Qin, Z., Fang, M., et al. (2015) The Mitochondrial Protein BNIP3L Is the Substrate of PARK2 and Mediates Mitophagy in PINK1/PARK2 Pathway. Human Molecular Genetics, 24, 2528-2538.
https://doi.org/10.1093/hmg/ddv017
[23] Ajoolabady, A., Chiong, M., Lavandero, S., Klionsky, D.J. and Ren, J. (2022) Mitophagy in Cardiovascular Diseases: Molecular Mechanisms, Pathogenesis, and Treatment. Trends in Molecular Medicine, 28, 836-849.
https://doi.org/10.1016/j.molmed.2022.06.007
[24] Stolz, A., Ernst, A. and Dikic, I. (2014) Cargo Recognition and Trafficking in Selective Autophagy. Nature Cell Biology, 16, 495-501.
https://doi.org/10.1038/ncb2979
[25] Wu, W., Li, W., Chen, H., Jiang, L., Zhu, R. and Feng, D. (2016) FUNDC1 Is a Novel Mitochondrial-Associated-Membrane (MAM) Protein Required for Hypoxia-Induced Mitochondrial Fission and Mitophagy. Autophagy, 12, 1675-1676.
https://doi.org/10.1080/15548627.2016.1193656
[26] Pei, Z., Liu, Y., Liu, S., Jin, W., Luo, Y., Sun, M., et al. (2021) FUNDC1 Insufficiency Sensitizes High Fat Diet Intake-Induced Cardiac Remodeling and Contractile Anomaly through ACSL4-Mediated Ferroptosis. Metabolism, 122, Article ID: 154840.
https://doi.org/10.1016/j.metabol.2021.154840
[27] Liang, X., Wang, S., Wang, L., Ceylan, A.F., Ren, J. and Zhang, Y. (2020) Mitophagy Inhibitor Liensinine Suppresses Doxorubicin-Induced Cardiotoxicity through Inhibition of Drp1-Mediated Maladaptive Mitochondrial Fission. Pharmacological Research, 157, Article ID: 104846.
https://doi.org/10.1016/j.phrs.2020.104846
[28] Drysdale, J., Arosio, P., Invernizzi, R., Cazzola, M., Volz, A., Corsi, B., et al. (2002) Mitochondrial Ferritin: A New Player in Iron Metabolism. Blood Cells, Molecules, and Diseases, 29, 376-383.
https://doi.org/10.1006/bcmd.2002.0577
[29] Wang, X., Ma, H., Sun, J., Zheng, T., Zhao, P., Li, H., et al. (2021) Mitochondrial Ferritin Deficiency Promotes Osteoblastic Ferroptosis via Mitophagy in Type 2 Diabetic Osteoporosis. Biological Trace Element Research, 200, 298-307.
https://doi.org/10.1007/s12011-021-02627-z
[30] Liu, M., Fan, Y., Li, D., Han, B., Meng, Y., Chen, F., et al. (2021) Ferroptosis Inducer Erastin Sensitizes NSCLC Cells to Celastrol through Activation of the Ros-Mitochondrial Fission-Mitophagy Axis. Molecular Oncology, 15, 2084-2105.
https://doi.org/10.1002/1878-0261.12936
[31] Basit, F., van Oppen, L.M., Schöckel, L., Bossenbroek, H.M., van Emst-de Vries, S.E., Hermeling, J.C., et al. (2017) Mitochondrial Complex I Inhibition Triggers a Mitophagy-Dependent ROS Increase Leading to Necroptosis and Ferroptosis in Melanoma Cells. Cell Death & Disease, 8, e2716.
https://doi.org/10.1038/cddis.2017.133
[32] Rademaker, G., Boumahd, Y., Peiffer, R., Anania, S., Wissocq, T., Liégeois, M., et al. (2022) Myoferlin Targeting Triggers Mitophagy and Primes Ferroptosis in Pancreatic Cancer Cells. Redox Biology, 53, Article ID: 102324.
https://doi.org/10.1016/j.redox.2022.102324
[33] Yu, F., Zhang, Q., Liu, H., Liu, J., Yang, S., Luo, X., et al. (2022) Dynamic O-Glcnacylation Coordinates Ferritinophagy and Mitophagy to Activate Ferroptosis. Cell Discovery, 8, Article No. 40.
https://doi.org/10.1038/s41421-022-00390-6
[34] Li, Y., Wang, X., Huang, Z., Zhou, Y., Xia, J., Hu, W., et al. (2021) CISD3 Inhibition Drives Cystine-Deprivation Induced Ferroptosis. Cell Death & Disease, 12, Article No. 839.
https://doi.org/10.1038/s41419-021-04128-2
[35] Su, L., Zhang, J., Gomez, H., Kellum, J.A. and Peng, Z. (2022) Mitochondria ROS and Mitophagy in Acute Kidney Injury. Autophagy, 19, 401-414.
https://doi.org/10.1080/15548627.2022.2084862
[36] Li, Q., Zhao, Z., Zhou, X., Yan, Y., Shi, L., Chen, J., et al. (2022) Ferroptosis: The Potential Target in Heart Failure with Preserved Ejection Fraction. Cells, 11, Article 2842.
https://doi.org/10.3390/cells11182842
[37] Chen, X., Xu, S., Zhao, C. and Liu, B. (2019) Role of TLR4/NADPH Oxidase 4 Pathway in Promoting Cell Death through Autophagy and Ferroptosis during Heart Failure. Biochemical and Biophysical Research Communications, 516, 37-43.
https://doi.org/10.1016/j.bbrc.2019.06.015
[38] Wang, J., Deng, B., Liu, Q., Huang, Y., Chen, W., Li, J., et al. (2020) Pyroptosis and Ferroptosis Induced by Mixed Lineage Kinase 3 (MLK3) Signaling in Cardiomyocytes Are Essential for Myocardial Fibrosis in Response to Pressure Overload. Cell Death & Disease, 11, Article No. 574.
https://doi.org/10.1038/s41419-020-02777-3
[39] Zhang, Z., Tang, J., Song, J., Xie, M., Liu, Y., Dong, Z., et al. (2022) Elabela Alleviates Ferroptosis, Myocardial Remodeling, Fibrosis and Heart Dysfunction in Hypertensive Mice by Modulating the IL-6/STAT3/GPX4 Signaling. Free Radical Biology and Medicine, 181, 130-142.
https://doi.org/10.1016/j.freeradbiomed.2022.01.020
[40] Zhang, X., Zheng, C., Gao, Z., Chen, H., Li, K., Wang, L., et al. (2021) SLC7A11/xCT Prevents Cardiac Hypertrophy by Inhibiting Ferroptosis. Cardiovascular Drugs and Therapy, 36, 437-447.
https://doi.org/10.1007/s10557-021-07220-z
[41] Park, T., Park, J.H., Lee, G.S., Lee, J., Shin, J.H., Kim, M.W., et al. (2019) Quantitative Proteomic Analyses Reveal That GPX4 Downregulation during Myocardial Infarction Contributes to Ferroptosis in Cardiomyocytes. Cell Death & Disease, 10, Article No. 835.
https://doi.org/10.1038/s41419-019-2061-8
[42] Li, X., Ma, N., Xu, J., Zhang, Y., Yang, P., Su, X., et al. (2021) Targeting Ferroptosis: Pathological Mechanism and Treatment of Ischemia-Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 1587922.
https://doi.org/10.1155/2021/1587922
[43] Baba, Y., Higa, J.K., Shimada, B.K., Horiuchi, K.M., Suhara, T., Kobayashi, M., et al. (2018) Protective Effects of the Mechanistic Target of Rapamycin against Excess Iron and Ferroptosis in Cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology, 314, H659-H668.
https://doi.org/10.1152/ajpheart.00452.2017
[44] Hwang, J., Park, J., Park, B., Kim, H., Kim, J., Sim, W., et al. (2021) Histochrome Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting Ferroptosis-Induced Cardiomyocyte Death. Antioxidants, 10, Article 1624.
https://doi.org/10.3390/antiox10101624
[45] Tadokoro, T., Ikeda, M., Ide, T., Deguchi, H., Ikeda, S., Okabe, K., et al. (2020) Mitochondria-Dependent Ferroptosis Plays a Pivotal Role in Doxorubicin Cardiotoxicity. JCI Insight, 5, [page].
https://doi.org/10.1172/jci.insight.132747
[46] Li, D., Liu, X., Pi, W., Zhang, Y., Yu, L., Xu, C., et al. (2022) Fisetin Attenuates Doxorubicin-Induced Cardiomyopathy in Vivo and in Vitro by Inhibiting Ferroptosis through Sirt1/nrf2 Signaling Pathway Activation. Frontiers in Pharmacology, 12, Article 808480.
https://doi.org/10.3389/fphar.2021.808480
[47] Quagliariello, V., De Laurentiis, M., Rea, D., Barbieri, A., Monti, M.G., Carbone, A., et al. (2021) The SGLT-2 Inhibitor Empagliflozin Improves Myocardial Strain, Reduces Cardiac Fibrosis and Pro-Inflammatory Cytokines in Non-Diabetic Mice Treated with Doxorubicin. Cardiovascular Diabetology, 20, Article 150.
https://doi.org/10.1186/s12933-021-01346-y
[48] Gibb, A.A., Lazaropoulos, M.P. and Elrod, J.W. (2020) Myofibroblasts and Fibrosis. Circulation Research, 127, 427-447.
https://doi.org/10.1161/circresaha.120.316958
[49] Taegtmeyer, H. (1994) Energy Metabolism of the Heart: From Basic Concepts to Clinical Applications Applications. Current Problems in Cardiology, 19, 61-86.
https://doi.org/10.1016/0146-2806(94)90008-6
[50] Lu, H., Tian, A., Wu, J., Yang, C., Xing, R., Jia, P., et al. (2014) Danshensu Inhibits Β-Adrenergic Receptors-Mediated Cardiac Fibrosis by Ros/p38 MAPK Axis. Biological and Pharmaceutical Bulletin, 37, 961-967.
https://doi.org/10.1248/bpb.b13-00921
[51] Li, X., Zhang, W., Cao, Q., Wang, Z., Zhao, M., Xu, L., et al. (2020) Mitochondrial Dysfunction in Fibrotic Diseases. Cell Death Discovery, 6, Article No. 80.
https://doi.org/10.1038/s41420-020-00316-9
[52] Kurita, Y., Araya, J., Minagawa, S., Hara, H., Ichikawa, A., Saito, N., et al. (2017) Pirfenidone Inhibits Myofibroblast Differentiation and Lung Fibrosis Development during Insufficient Mitophagy. Respiratory Research, 18, Article No. 114.
https://doi.org/10.1186/s12931-017-0600-3
[53] Guan, C., Zhang, H., Wang, Y., Chen, Z., Deng, B., Qiu, Q., et al. (2021) The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5572088.
https://doi.org/10.1155/2021/5572088
[54] Suliman, H.B., Keenan, J.E. and Piantadosi, C.A. (2017) Mitochondrial Quality-Control Dysregulation in condItional HO-1–/– Mice. JCI Insight, 2, e89676.
https://doi.org/10.1172/jci.insight.89676
[55] Wang, J., Chen, P., Cao, Q., Wang, W. and Chang, X. (2022) Traditional Chinese Medicine Ginseng Dingzhi Decoction Ameliorates Myocardial Fibrosis and High Glucose-Induced Cardiomyocyte Injury by Regulating Intestinal Flora and Mitochondrial Dysfunction. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9205908.
https://doi.org/10.1155/2022/9205908
[56] Zhang, X., Li, Z., Eirin, A., Ebrahimi, B., Pawar, A.S., Zhu, X., et al. (2015) Cardiac Metabolic Alterations in Hypertensive Obese Pigs. Hypertension, 66, 430-436.
https://doi.org/10.1161/hypertensionaha.115.05478