|
[1]
|
Cao, F., Li, D.-P., Wu, G.-C., He, Y.-S., Liu, Y.-C., Hou, J.-J., et al. (2023) Global, Regional and National Temporal Trends in Prevalence for Musculoskeletal Disorders in Women of Childbearing Age, 1990-2019: An Age-Period-Cohort Analysis Based on the Global Burden of Disease Study 2019. Annals of the Rheumatic Diseases, 83, 121-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bianchi, E., Faccendini, A., Del Favero, E., Ricci, C., Caliogna, L., Vigani, B., et al. (2022) Topographical and Compositional Gradient Tubular Scaffold for Bone to Tendon Interface Regeneration. Pharmaceutics, 14, Article 2153. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Farshidfar, N., Amiri, M.A., Jafarpour, D., Hamedani, S., Niknezhad, S.V. and Tayebi, L. (2022) The Feasibility of Injectable PRF (I-PRF) for Bone Tissue Engineering and Its Application in Oral and Maxillofacial Reconstruction: From Bench to Chairside. Biomaterials Advances, 134, Article 112557. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Gollapudi, M., Bajaj, P. and Oza, R.R. (2022) Injectable Platelet-Rich Fibrin—A Revolution in Periodontal Regeneration. Cureus, 14, e28647. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kosmidis, K., Ehsan, K., Pitzurra, L., Loos, B. and Jansen, I. (2023) An in vitro Study into Three Different PRF Preparations for Osteogenesis Potential. Journal of Periodontal Research, 58, 483-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lektemur Alpan, A., Torumtay Cin, G., Kızıldağ, A., Zavrak, N., Özmen, Ö., Arslan, Ş., et al. (2023) Evaluation of the Effect of Injectable Platelet-Rich Fibrin (i-PRF) in Wound Healing and Growth Factor Release in Rats: A Split-Mouth Study. Growth Factors, 42, 36-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Miron, R.J., Gruber, R., Farshidfar, N., Sculean, A. and Zhang, Y. (2023) Ten Years of Injectable Platelet-Rich Fibrin. Periodontology 2000, 94, 92-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wong, C.-C., Yeh, Y.-Y., Yang, T.-L., Tsuang, Y.-H. and Chen, C.-H. (2020) Augmentation of Tendon Graft-Bone Tunnel Interface Healing by Use of Bioactive Platelet-Rich Fibrin Scaffolds. The American Journal of Sports Medicine, 48, 1379-1388. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Celikten, M., Sahin, H., Senturk, G.E., Bilsel, K., Pulatkan, A., Kapicioglu, M., et al. (2024) The Effect of Platelet-Rich Fibrin, Platelet-Rich Plasma, and Concentrated Growth Factor in the Repair of Full Thickness Rotator Cuff Tears. Journal of Shoulder and Elbow Surgery, 33, E261-E277. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Miron, R.J., Fujioka-Kobayashi, M., Hernandez, M., Kandalam, U., Zhang, Y., Ghanaati, S., et al. (2017) Injectable Platelet Rich Fibrin (i-PRF): Opportunities in Regenerative Dentistry? Clinical Oral Investigations, 21, 2619-2627. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Tian, B., Zhang, M. and Kang, X. (2023) Strategies to Promote Tendon-Bone Healing after Anterior Cruciate Ligament Reconstruction: Present and Future. Frontiers in Bioengineering and Biotechnology, 11, Article 1104214. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Anitua, E., Allende, M. and Alkhraisat, M.H. (2022) Unravelling Alveolar Bone Regeneration Ability of Platelet-Rich Plasma: A Systematic Review with Meta-Analysis. Bioengineering, 9, Article 506. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Shafizadeh, S., Heydari, P., Zargar Kharazi, A. and Shariati, L. (2024) Coaxial Electrospun PGS/PCL and PGS/PGS-PCL Nanofibrous Membrane Containing Platelet-Rich Plasma for Skin Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 35, 482-500. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rastegar, A., Mahmoodi, M., Mirjalili, M. and Nasirizadeh, N. (2021) Platelet-Rich Fibrin-Loaded PCL/Chitosan Core-Shell Fibers Scaffold for Enhanced Osteogenic Differentiation of Mesenchymal Stem Cells. Carbohydrate Polymers, 269, Article 118351. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, Y. and Xu, L. (2018) Preparation and Characterization of Porous Core-Shell Fibers for Slow Release of Tea Polyphenols. Polymers, 10, Article 144. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zandi, N., Lotfi, R., Tamjid, E., Shokrgozar, M.A. and Simchi, A. (2020) Core-Sheath Gelatin Based Electrospun Nanofibers for Dual Delivery Release of Biomolecules and Therapeutics. Materials Science and Engineering: C, 108, Article 110432. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Esmaeili, A. and Haseli, M. (2017) Optimization, Synthesis, and Characterization of Coaxial Electrospun Sodium Carboxymethyl Cellulose-Graft-Methyl Acrylate/Poly(Ethylene Oxide) Nanofibers for Potential Drug-Delivery Applications. Carbohydrate Polymers, 173, 645-653. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Iqbal, S., Rashid, M., Arbab, A. and Khan, M. (2017) Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and in Vitro Testing for Sustained and Targeted Therapy. Journal of Biomedical Nanotechnology, 13, 355-366. [Google Scholar] [CrossRef] [PubMed]
|