|
[1]
|
Fu, J., Liu, K., Li, H., Hu, J. and Liu, M. (2021) Bimetallic Atomic Site Catalysts for CO2 Reduction Reactions: A Review. Environmental Chemistry Letters, 20, 243-262. [Google Scholar] [CrossRef]
|
|
[2]
|
Nam, D., De Luna, P., Rosas-Hernández, A., Thevenon, A., Li, F., Agapie, T., et al. (2020) Molecular Enhancement of Heterogeneous CO2 Reduction. Nature Materials, 19, 266-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hoang, T.T.H., Verma, S., Ma, S., Fister, T.T., Timoshenko, J., Frenkel, A.I., et al. (2018) Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. Journal of the American Chemical Society, 140, 5791-5797. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K. and Jaramillo, T.F. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, eaad4998. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Benson, E.E., Kubiak, C.P., Sathrum, A.J. and Smieja, J.M. (2009) Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels. Chemical Society Reviews, 38, 89-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Han, X., Zhang, T. and Arbiol, J. (2023) Metal-Organic Framework-Derived Single Atom Catalysts for Electrocatalytic Reduction of Carbon Dioxide to C1 Products. Energy Advances, 2, 252-267. [Google Scholar] [CrossRef]
|
|
[7]
|
Batten, S.R., Champness, N.R., Chen, X., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., et al. (2013) Terminology of Metal-Organic Frameworks and Coordination Polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry, 85, 1715-1724. [Google Scholar] [CrossRef]
|
|
[8]
|
Fürstner, A. (2014) Catalysis for Total Synthesis: A Personal Account. Angewandte Chemie International Edition, 53, 8587-8598. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kaufhold, S., Petermann, L., Staehle, R. and Rau, S. (2015) Transition Metal Complexes with N-Heterocyclic Carbene Ligands: From Organometallic Hydrogenation Reactions toward Water Splitting. Coordination Chemistry Reviews, 304, 73-87. [Google Scholar] [CrossRef]
|
|
[10]
|
Rowsell, J.L.C. and Yaghi, O.M. (2004) Metal-Organic Frameworks: A New Class of Porous Materials. Microporous and Mesoporous Materials, 73, 3-14. [Google Scholar] [CrossRef]
|
|
[11]
|
Borboudakis, G., Stergiannakos, T., Frysali, M., Klontzas, E., Tsamardinos, I. and Froudakis, G.E. (2017) Chemically Intuited, Large-Scale Screening of MOFs by Machine Learning Techniques. npj Computational Materials, 3, Article No. 40. [Google Scholar] [CrossRef]
|
|
[12]
|
Yuan, X., Deng, X., Cai, C., Shi, Z., Liang, H., Li, S., et al. (2021) Machine Learning and High-Throughput Computational Screening of Hydrophobic Metal-Organic Frameworks for Capture of Formaldehyde from Air. Green Energy & Environment, 6, 759-770. [Google Scholar] [CrossRef]
|
|
[13]
|
Panapitiya, G., Avendaño-Franco, G., Ren, P., Wen, X., Li, Y. and Lewis, J.P. (2018) Machine-Learning Prediction of CO Adsorption in Thiolated, Ag-Alloyed Au Nanoclusters. Journal of the American Chemical Society, 140, 17508-17514. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Pardakhti, M., Moharreri, E., Wanik, D., Suib, S.L. and Srivastava, R. (2017) Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs). ACS Combinatorial Science, 19, 640-645. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Xie, C., Xie, Y., Zhang, C., Dong, H. and Zhang, L. (2023) Explainable Machine Learning for Carbon Dioxide Adsorption on Porous Carbon. Journal of Environmental Chemical Engineering, 11, Article 109053. [Google Scholar] [CrossRef]
|
|
[16]
|
Xing, M., Zhang, Y., Li, S., He, H. and Sun, S. (2022) Prediction of Carbon Dioxide Reduction Catalyst Using Machine Learning with a Few-Feature Model: WLEDZ. The Journal of Physical Chemistry C, 126, 17025-17035. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhang, Q., Zhu, K., Luo, Y., Bai, Z., Zhang, Z. and Li, J. (2023) Machine-Learning-Guided Prediction of Cu-Based Electrocatalysts towards Ethylene Production in CO2 Reduction. Molecular Catalysis, 547, Article 113366. [Google Scholar] [CrossRef]
|
|
[18]
|
Sun, Z., Yin, H., Liu, K., Cheng, S., Li, G.K., Kawi, S., et al. (2022) Machine Learning Accelerated Calculation and Design of Electrocatalysts for CO2 Reduction. SmartMat, 3, 68-83. [Google Scholar] [CrossRef]
|
|
[19]
|
Nakata, K., Ozaki, T., Terashima, C., Fujishima, A. and Einaga, Y. (2013) High-Yield Electrochemical Production of Formaldehyde from CO2 and Seawater. Angewandte Chemie International Edition, 53, 871-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Albo, J., Perfecto-Irigaray, M., Beobide, G. and Irabien, A. (2019) Cu/Bi Metal-Organic Framework-Based Systems for an Enhanced Electrochemical Transformation of CO2 to Alcohols. Journal of CO2 Utilization, 33, 157-165. [Google Scholar] [CrossRef]
|
|
[21]
|
Wang, S., Yao, W., Lin, J., Ding, Z. and Wang, X. (2013) Cobalt Imidazolate Metal-Organic Frameworks Photosplit CO2 under Mild Reaction Conditions. Angewandte Chemie International Edition, 53, 1034-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lamagni, P., Miola, M., Catalano, J., Hvid, M.S., Mamakhel, M.A.H., Christensen, M., et al. (2020) Restructuring Metal-Organic Frameworks to Nanoscale Bismuth Electrocatalysts for Highly Active and Selective CO2 Reduction to Formate. Advanced Functional Materials, 30, Article 1910408. [Google Scholar] [CrossRef]
|
|
[23]
|
Kung, C., Audu, C.O., Peters, A.W., Noh, H., Farha, O.K. and Hupp, J.T. (2017) Copper Nanoparticles Installed in Metal-Organic Framework Thin Films Are Electrocatalytically Competent for CO2 Reduction. ACS Energy Letters, 2, 2394-2401. [Google Scholar] [CrossRef]
|
|
[24]
|
Tang, C., Jiao, Y., Shi, B., Liu, J., Xie, Z., Chen, X., et al. (2020) Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. Angewandte Chemie International Edition, 59, 9171-9176. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Albolkany, M.K., Liu, C., Wang, Y., Chen, C., Zhu, C., Chen, X., et al. (2021) Molecular Surgery at Microporous MOF for Mesopore Generation and Renovation. Angewandte Chemie International Edition, 60, 14601-14608. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Peng, Y., Xu, J., Xu, J., Ma, J., Bai, Y., Cao, S., et al. (2022) Metal-Organic Framework (MOF) Composites as Promising Materials for Energy Storage Applications. Advances in Colloid and Interface Science, 307, Article 102732. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lee, S., Kim, B. and Kim, J. (2019) Predicting Performance Limits of Methane Gas Storage in Zeolites with an Artificial Neural Network. Journal of Materials Chemistry A, 7, 2709-2716. [Google Scholar] [CrossRef]
|
|
[28]
|
Li, H., Zhang, Z. and Liu, Z. (2017) Application of Artificial Neural Networks for Catalysis: A Review. Catalysts, 7, Article 306. [Google Scholar] [CrossRef]
|
|
[29]
|
Yılmaz, B., Oral, B. and Yıldırım, R. (2023) Machine Learning Analysis of Catalytic CO2 Methanation. International Journal of Hydrogen Energy, 48, 24904-24914. [Google Scholar] [CrossRef]
|
|
[30]
|
Zhang, N., Yang, B., Liu, K., Li, H., Chen, G., Qiu, X., et al. (2021) Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction. Small Methods, 5, Article 2100987. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hazama, H., Murai, D., Nagasako, N., Hasegawa, M. and Ogihara, N. (2020) Optimization of Material Composition of Li-Intercalated Metal-Organic Framework Electrodes Using a Combination of Experiments and Machine Learning of X-Ray Diffraction Patterns. Advanced Materials Technologies, 5, Article 2000254. [Google Scholar] [CrossRef]
|
|
[32]
|
Li, S., Zhang, Y., Hu, Y., Wang, B., Sun, S., Yang, X., et al. (2021) Predicting Metal-Organic Frameworks as Catalysts to Fix Carbon Dioxide to Cyclic Carbonate by Machine Learning. Journal of Materiomics, 7, 1029-1038. [Google Scholar] [CrossRef]
|