|
[1]
|
Mayadev, J.S., Ke, G., Mahantshetty, U., Pereira, M.D., Tarnawski, R. and Toita, T. (2022) Global Challenges of Radiotherapy for the Treatment of Locally Advanced Cervical Cancer. International Journal of Gynecologic Cancer, 32, 436-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Torti, S.V., Manz, D.H., Paul, B.T., Blanchette-Farra, N. and Torti, F.M. (2018) Iron and Cancer. Annual Review of Nutrition, 38, 97-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
杨克鑫, 刘一萌, 赵天南, 郭丽, 张萍. TFRC通过JAK-STAT信号通路影响宫颈鳞状细胞癌的增殖、迁移和侵袭[J]. 中国计划生育和妇产科, 2023, 15(11): 101-106+112.
|
|
[4]
|
Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Disease. Cell, 132, 27-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative Proteomics Identifies NCOA4 as the Cargo Receptor Mediating Ferritinophagy. Nature, 509, 105-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Santana-Codina, N., del Rey, M.Q., Kapner, K.S., Zhang, H., Gikandi, A., Malcolm, C., et al. (2022) NCOA4-Mediated Ferritinophagy Is a Pancreatic Cancer Dependency via Maintenance of Iron Bioavailability for Iron-Sulfur Cluster Proteins. Cancer Discovery, 12, 2180-2197. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
李沫, 宓淑芳, 王孝信. lncRNA-CCAT1通过调控PI3K/Akt/mTOR信号通路对宫颈癌HeLa细胞自噬的影响[J]. 中国免疫学杂志, 2021, 37(15): 1855-1859.
|
|
[8]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Buskwofie, A., David-West, G. and Clare, C.A. (2020) A Review of Cervical Cancer: Incidence and Disparities. Journal of the National Medical Association, 112, 229-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Rahangdale, L., Mungo, C., O’Connor, S., Chibwesha, C.J. and Brewer, N.T. (2022) Human Papillomavirus Vaccination and Cervical Cancer Risk. BMJ, 379, e070115. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shen, Y., Li, X., Dong, D., Zhang, B., Xue, Y. and Shang, P. (2018) Transferrin Receptor 1 in Cancer: A New Sight for Cancer Therapy. American Journal of Cancer Research, 8, 916-931.
|
|
[12]
|
Yu, H., Guo, P., Xie, X., Wang, Y. and Chen, G. (2016) Ferroptosis, a New Form of Cell Death, and Its Relationships with Tumourous Diseases. Journal of Cellular and Molecular Medicine, 21, 648-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kuang, Y. and Wang, Q. (2019) Iron and Lung Cancer. Cancer Letters, 464, 56-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Forciniti, S., Greco, L., Grizzi, F., Malesci, A. and Laghi, L. (2020) Iron Metabolism in Cancer Progression. International Journal of Molecular Sciences, 21, Article No. 2257. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shirakihara, T., Yamaguchi, H., Kondo, T., Yashiro, M. and Sakai, R. (2022) Transferrin Receptor 1 Promotes the Fibroblast Growth Factor Receptor-Mediated Oncogenic Potential of Diffused-Type Gastric Cancer. Oncogene, 41, 2587-2596. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Klionsky, D.J., Petroni, G., Amaravadi, R.K., Baehrecke, E.H., Ballabio, A., Boya, P., et al. (2021) Autophagy in Major Human Diseases. The EMBO Journal, 40, e108863. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lizama, B.N. and Chu, C.T. (2021) Neuronal Autophagy and Mitophagy in Parkinson’s Disease. Molecular Aspects of Medicine, 82, Article ID: 100972. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Holm, T.M., Bian, Z.C., Manupati, K. and Guan, J. (2022) Inhibition of Autophagy Mitigates Cell Migration and Invasion in Thyroid Cancer. Surgery, 171, 235-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, P., Li, L., Wang, W., He, C. and Xu, C. (2023) MST4 Promotes Proliferation, Invasion, and Metastasis of Gastric Cancer by Enhancing Autophagy. Heliyon, 9, e16735. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Abd El-Aziz, Y.S., Gillson, J., Jansson, P.J. and Sahni, S. (2022) Autophagy: A Promising Target for Triple Negative Breast Cancers. Pharmacological Research, 175, Article ID: 106006. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hu, Y., Zhong, J., Gong, L., Zhang, S. and Zhou, S. (2020) Autophagy-Related Beclin 1 and Head and Neck Cancers. OncoTargets and Therapy, 13, 6213-6227. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Harsha, C., Banik, K., Ang, H.L., Girisa, S., Vikkurthi, R., Parama, D., et al. (2020) Targeting AKT/mTOR in Oral Cancer: Mechanisms and Advances in Clinical Trials. International Journal of Molecular Sciences, 21, Article No. 3285. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y. and Hu, L. (2020) ERK/MAPK Signalling Pathway and Tumorigenesis (Review). Experimental and Therapeutic Medicine, 19, 1997-2007. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Barbosa, R., Acevedo, L.A. and Marmorstein, R. (2021) The MEK/ERK Network as a Therapeutic Target in Human Cancer. Molecular Cancer Research, 19, 361-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kang, R., Zeh, H.J., Lotze, M.T. and Tang, D. (2011) The Beclin 1 Network Regulates Autophagy and Apoptosis. Cell Death & Differentiation, 18, 571-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Huang, H., Han, Q., Zheng, H., Liu, M., Shi, S., Zhang, T., et al. (2021) MAP4K4 Mediates the SOX6-Induced Autophagy and Reduces the Chemosensitivity of Cervical Cancer. Cell Death & Disease, 13, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|