[1]
|
Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., et al. (2012) A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2224-2260. https://doi.org/10.1016/S0140-6736(12)61766-8
|
[2]
|
Kearney, P.M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P.K. and He, J. (2005) Global Burden of Hypertension: Analysis of Worldwide Data. The Lancet, 365, 217-223. https://doi.org/10.1016/s0140-6736(05)70151-3
|
[3]
|
GBD 2017 Risk Factor Collaborators (2018) Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1923-1994. https://doi.org/10.1016/S0140-6736(18)32225-6
|
[4]
|
Kirkland, E.B., Heincelman, M., Bishu, K.G., et al. (2018) Trends in Healthcare Expenditures among US Adults with Hypertension: National Estimates, 2003-2014. Journal of the American Heart Association, 7, e008731. https://doi.org/10.1161/JAHA.118.008731
|
[5]
|
Durand, H., Hayes, P., Morrissey, E.C., Newell, J., Casey, M., Murphy, A.W., et al. (2017) Medication Adherence among Patients with Apparent Treatment-Resistant Hypertension: Systematic Review and Meta-Analysis. Journal of Hypertension, 35, 2346-2357. https://doi.org/10.1097/hjh.0000000000001502
|
[6]
|
Ritchey, M., Chang, A., Powers, C., Loustalot, F., Schieb, L., Ketcham, M., et al. (2016) Vital Signs: Disparities in Antihypertensive Medication Nonadherence among Medicare Part D Beneficiaries—United States, 2014. Morbidity and Mortality Weekly Report, 65, 967-976. https://doi.org/10.15585/mmwr.mm6536e1
|
[7]
|
Grassi, G. and Ram, V.S. (2016) Evidence for a Critical Role of the Sympathetic Nervous System in Hypertension. Journal of the American Society of Hypertension, 10, 457-466. https://doi.org/10.1016/j.jash.2016.02.015
|
[8]
|
Sheng, Y. and Zhu, L. (2018) The Crosstalk between Autonomic Nervous System and Blood Vessels. International Journal of Physiology, Pathophysiology and Pharmacology, 10, 17-28.
|
[9]
|
Osborn, J.W. and Foss, J.D. (2017) Renal Nerves and Long-Term Control of Arterial Pressure. Comprehensive Physiology, 7, 263-320. https://doi.org/10.1002/cphy.c150047
|
[10]
|
Peet, M.M. (1947) Results of Bilateral Supradiaphragmatic Splanchnicectomy for Arterial Hypertension. New England Journal of Medicine, 236, 270-277. https://doi.org/10.1056/nejm194702202360802
|
[11]
|
Smithwick, R.H. and Thompson, J.E. (1953) Splanchnicectomy for Essential Hypertension. Journal of the American Medical Association, 152, 1501-1504. https://doi.org/10.1001/jama.1953.03690160001001
|
[12]
|
Bunte, M.C., Infante de Oliveira, E. and Shishehbor, M.H. (2013) Endovascular Treatment of Resistant and Uncontrolled Hypertension: Therapies on the Horizon. JACC: Cardiovascular Interventions, 6, 1-9. https://doi.org/10.1016/j.jcin.2012.09.005
|
[13]
|
Hering, D., Nikoleishvili, D., Imedadze, A., Dughashvili, G., Klimiashvili, Z., Bekaia, E., et al. (2022) Transurethral Renal Pelvic Denervation: A Feasibility Trial in Patients with Uncontrolled Hypertension. Hypertension, 79, 2787-2795. https://doi.org/10.1161/hypertensionaha.122.20048
|
[14]
|
Krum, H., Schlaich, M.P., Sobotka, P.A., Böhm, M., Mahfoud, F., Rocha-Singh, K., et al. (2014) Percutaneous Renal Denervation in Patients with Treatment-Resistant Hypertension: Final 3-Year Report of the Symplicity HTN-1 Study. The Lancet, 383, 622-629. https://doi.org/10.1016/s0140-6736(13)62192-3
|
[15]
|
Esler, M.D., Krum, H., Sobotka, P.A., et al. (2010) Renal Sympathetic Denervation in Patients with Treatment-Resistant Hypertension (The Symplicity HTN-2 Trial): A Randomised Controlled Trial. The Lancet, 376, 1903-1909. https://doi.org/10.1016/S0140-6736(10)62039-9
|
[16]
|
Bakris, G.L., Townsend, R.R., Flack, J.M., et al. (2015) 12-Month Blood Pressure Results of Catheter-Based Renal Artery Denervation for Resistant Hypertension: The SYMPLICITY HTN-3 Trial. Journal of the American College of Cardiology, 65, 1314-1321. https://doi.org/10.1016/j.jacc.2015.01.037
|
[17]
|
Azizi, M., Sapoval, M., Gosse, P., Monge, M., Bobrie, G., Delsart, P., et al. (2015) Optimum and Stepped Care Standardised Antihypertensive Treatment with or without Renal Denervation for Resistant Hypertension (DENERHTN): A Multicentre, Open-Label, Randomised Controlled Trial. The Lancet, 385, 1957-1965. https://doi.org/10.1016/s0140-6736(14)61942-5
|
[18]
|
Mahfoud, F., Böhm, M., Schmieder, R., Narkiewicz, K., Ewen, S., Ruilope, L., et al. (2019) Effects of Renal Denervation on Kidney Function and Long-Term Outcomes: 3-Year Follow-Up from the Global SYMPLICITY Registry. European Heart Journal, 40, 3474-3482. https://doi.org/10.1093/eurheartj/ehz118
|
[19]
|
Schlaich, M.P., Sobotka, P.A., Krum, H., Lambert, E. and Esler, M.D. (2009) Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension. New England Journal of Medicine, 361, 932-934. https://doi.org/10.1056/nejmc0904179
|
[20]
|
Krum, H., Schlaich, M., Whitbourn, R., Sobotka, P.A., Sadowski, J., Bartus, K., et al. (2009) Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Multicentre Safety and Proof-of-Principle Cohort Study. The Lancet, 373, 1275-1281. https://doi.org/10.1016/s0140-6736(09)60566-3
|
[21]
|
Symplicity HTN-1 Investigators (2011) Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: Durability of Blood Pressure Reduction Out to 24 Months. Hypertension, 57, 911-917. https://doi.org/10.1161/hypertensionaha.110.163014
|
[22]
|
Esler, M.D., Böhm, M., Sievert, H., Rump, C.L., Schmieder, R.E., Krum, H., et al. (2014) Catheter-Based Renal Denervation for Treatment of Patients with Treatment-Resistant Hypertension: 36 Month Results from the SYMPLICITY HTN-2 Randomized Clinical Trial. European Heart Journal, 35, 1752-1759. https://doi.org/10.1093/eurheartj/ehu209
|
[23]
|
Bhatt, D.L., Kandzari, D.E. and O’Neill, W.W. (2014) A Controlled Trial of Renal Denervation for Resistant Hypertension. Journal of Vascular Surgery, 60, 266. https://doi.org/10.1016/j.jvs.2014.05.038
|
[24]
|
Osborn, J.W. and Banek, C.T. (2018) Catheter-Based Renal Nerve Ablation as a Novel Hypertension Therapy: Lost, and then Found, in Translation. Hypertension, 71, 383-388. https://doi.org/10.1161/hypertensionaha.117.08928
|
[25]
|
Kandzari, D.E., Bhatt, D.L., Brar, S., Devireddy, C.M., Esler, M., Fahy, M., et al. (2014) Predictors of Blood Pressure Response in the SYMPLICITY HTN-3 Trial. European Heart Journal, 36, 219-227. https://doi.org/10.1093/eurheartj/ehu441
|
[26]
|
Hannawi, B., Ibrahim, H. and Barker, C.M. (2015) Renal Denervation: Past, Present, and Future. Reviews in Cardiovascular Medicine, 16, 114-124. https://doi.org/10.3909/ricm0755
|
[27]
|
Tzafriri, A.R., Mahfoud, F., Keating, J.H., Markham, P.M., Spognardi, A., Wong, G., et al. (2014) Innervation Patterns May Limit Response to Endovascular Renal Denervation. Journal of the American College of Cardiology, 64, 1079-1087. https://doi.org/10.1016/j.jacc.2014.07.937
|
[28]
|
Townsend, R.R., Mahfoud, F., Kandzari, D.E., Kario, K., Pocock, S., Weber, M.A., et al. (2017) Catheter-Based Renal Denervation in Patients with Uncontrolled Hypertension in the Absence of Antihypertensive Medications (SPYRAL HTN-OFF MED): A Randomised, Sham-Controlled, Proof-of-Concept Trial. The Lancet, 390, 2160-2170. https://doi.org/10.1016/S0140-6736(17)32281-X
|
[29]
|
Kandzari, D.E., Böhm, M., Mahfoud, F., et al. (2018) Effect of Renal Denervation on Blood Pressure in the Presence of Antihypertensive Drugs: 6-Month Efficacy and Safety Results from the SPYRAL HTN-ON MED Proof-of-Concept Randomised Trial. The Lancet, 391, 2346-2355. https://doi.org/10.1016/S0140-6736(18)30951-6
|
[30]
|
Sharp, A.S.P., Sanderson, A., Hansell, N., Reddish, K., Miller, P., Moss, J., et al. (2024) Renal Denervation for Uncontrolled Hypertension: A Systematic Review and Meta-Analysis Examining Multiple Subgroups. Journal of Hypertension, 42, 1133-1144. https://doi.org/10.1097/hjh.0000000000003727
|
[31]
|
Brouwers, S., Sudano, I., Kokubo, Y. and Sulaica, E.M. (2021) Arterial Hypertension. The Lancet, 398, 249-261. https://doi.org/10.1016/s0140-6736(21)00221-x
|
[32]
|
Fengler, K., Rommel, K.-P., Lapusca, R., Blazek, S., Besler, C., Hartung, P., et al. (2019) Renal Denervation in Isolated Systolic Hypertension Using Different Catheter Techniques and Technologies: Insights from a Randomized Trial. Hypertension, 74, 341-348. https://doi.org/10.1161/hypertensionaha.119.13019
|
[33]
|
Doumas, M., Papademetriou, V. and Tsioufis, C. (2019) Renal Sympathetic Denervation in Isolated Systolic Hypertension: Justified Exclusion? Hypertension, 74, 255-256. https://doi.org/10.1161/hypertensionaha.119.13168
|
[34]
|
Kario, K., Kagitani, H., Hayashi, S., Hanamura, S., Ozawa, K. and Kanegae, H. (2021) A Japan Nationwide Web-Based Survey of Patient Preference for Renal Denervation for Hypertension Treatment. Hypertension Research, 45, 232-240. https://doi.org/10.1038/s41440-021-00760-9
|
[35]
|
Murai, H., Okuyama, Y., Sakata, Y., Kaneko, S., Hamaoka, T., Okabe, Y., et al. (2015) Different Responses of Arterial Blood Pressure to Electrical Stimulation of the Renal Artery in Patients with Resistant Hypertension. International Journal of Cardiology, 190, 296-298. https://doi.org/10.1016/j.ijcard.2015.04.196
|
[36]
|
Gal, P., de Jong, M.R., Smit, J.J.J., et al. (2015) Blood Pressure Response to Renal Nerve Stimulation in Patients Undergoing Renal Denervation: A Feasibility Study. Journal of Human Hypertension, 29, 292-295. https://doi.org/10.1038/jhh.2014.91
|
[37]
|
Hoogerwaard, A.F., Adiyaman, A., de Jong, M.R., et al. (2021) Renal Nerve Stimulation: Complete versus Incomplete Renal Sympathetic Denervation. Blood Pressure, 30, 376-385. https://doi.org/10.1080/08037051.2021.1982376
|
[38]
|
Chen, W., Du, H., Lu, J., et al. (2016) Renal Artery Vasodilation May Be an Indicator of Successful Sympathetic Nerve Damage during Renal Denervation Procedure. Scientific Reports, 6, Article No. 37218. https://doi.org/10.1038/srep37218
|
[39]
|
Kantauskaite, M., Vonend, O., Yakoub, M., Heilmann, P., Maifeld, A., Minko, P., et al. (2023) The Effect of Renal Denervation on T Cells in Patients with Resistant Hypertension. International Journal of Molecular Sciences, 24, Article 2493. https://doi.org/10.3390/ijms24032493
|
[40]
|
Townsend, R.R., Walton, A., Hettrick, D.A., Hickey, G.L., Weil, J., Sharp, A.S.P., et al. (2020) Review and Meta-Analysis of Renal Artery Damage Following Percutaneous Renal Denervation with Radiofrequency Renal Artery Ablation. EuroIntervention, 16, 89-96. https://doi.org/10.4244/EIJ-D-19-00902
|
[41]
|
Sata, Y., Burke, S.L., Gueguen, C., et al. (2020) Contribution of the Renal Nerves to Hypertension in a Rabbit Model of Chronic Kidney Disease. Hypertension, 76, 1470-1479. https://doi.org/10.1161/HYPERTENSIONAHA.120.15769
|
[42]
|
Sata, Y., Burke, S.L., Eikelis, N., Watson, A.M.D., Gueguen, C., Jackson, K.L., et al. (2021) Renal Deafferentation Prevents Progression of Hypertension and Changes to Sympathetic Reflexes in a Rabbit Model of Chronic Kidney Disease. Hypertension, 78, 1310-1321. https://doi.org/10.1161/HYPERTENSIONAHA.121.17037
|
[43]
|
Zhu, B., Liu, Y., Qi, D., Zhao, L., Yang, X., Su, E., et al. (2022) Renal Interstitial Fibrosis Is Reduced in High-Fat Diet-Induced Obese Pigs following Renal Denervation from the Intima and Adventitia of the Renal Artery. Kidney & Blood Pressure Research, 47, 135-146. https://doi.org/10.1159/000521100
|
[44]
|
Li, Q., Deng, Y., Liu, L., Zhang, C., Cai, Y., Zhang, T., et al. (2022) Sympathetic Denervation Ameliorates Renal Fibrosis via Inhibition of Cellular Senescence. Frontiers in Immunology, 12, Article 823935. https://doi.org/10.3389/fimmu.2021.823935
|
[45]
|
Banek, C.T., Gauthier, M.M., Baumann, D.C., Van Helden, D., Asirvatham-Jeyaraj, N., Panoskaltsis-Mortari, A., et al. (2018) Targeted Afferent Renal Denervation Reduces Arterial Pressure But Not Renal Inflammation in Established DOCA-Salt Hypertension in the Rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 314, R883-R891. https://doi.org/10.1152/ajpregu.00416.2017
|
[46]
|
Kumagai, H., Oshima, N., Matsuura, T., Iigaya, K., et al. (2012) Importance of Rostral Ventrolateral Medulla Neurons in Determining Efferent Sympathetic Nerve Activity and Blood pressure. Hypertension Research, 35, 132-141. https://doi.org/10.1038/hr.2011.208
|
[47]
|
Ong, J., Kinsman, B.J., Sved, A.F., Rush, B.M., Tan, R.J., Carattino, M.D., et al. (2019) Renal Sensory Nerves Increase Sympathetic Nerve Activity and Blood Pressure in 2-Kidney 1-Clip Hypertensive Mice. Journal of Neurophysiology, 122, 358-367. https://doi.org/10.1152/jn.00173.2019
|