肾动脉消融去交感神经术治疗高血压研究进展
Study Progress on Renal Sympathetic Denervation in the Treatment of Hypertension
DOI: 10.12677/acm.2024.1471979, PDF, HTML, XML,   
作者: 张晓东*, 武双全, 于 泓#:同济大学附属东方医院胶州医院心血管内科,山东 青岛;卢祥云:青岛市胶州中心医院肾病风湿免疫科,山东 青岛
关键词: 高血压肾动脉去交感神经术Hypertension Renal Sympathetic Denervation
摘要: 高血压目前是导致心脑血管疾病的主要危险因素之一,同时也是成人全因死亡的主要危险因素,包括药物依从性差以及药物不耐受等多种原因导致血压不达标造成的靶器官损害直接危害着人类的健康。研究发现肾脏交感神经的过度激活是导致高血压发生的相关机制之一,鉴于肾交感神经在血压的神经源性控制和高血压的病理生理中的关键作用,肾动脉去交感神经作为高血压治疗的一种方式已被研究了多年。对于肾动脉去交感神经术的临床治疗效果仍存在许多争议。本文就肾动脉去交感神经术治疗高血压的相关研究及进展进行综述。
Abstract: Hypertension is currently one of the main risk factors for cardiovascular and cerebrovascular diseases, and it is also a major risk factor for all-cause mortality in adults. Target organ damage caused by blood pressure non-compliance, including poor medication adherence and drug intolerance, directly endangers human health. Studies have found that the overactivation of renal sympathetic nerves is one of the mechanisms leading to the development of hypertension. Given the key role of renal sympathetic nerves in neurogenic control of blood pressure and the pathophysiology of hypertension, renal artery denervation as a treatment for hypertension has been studied for many years. There are still many controversies regarding the clinical efficacy of renal artery denervation. This article reviews the relevant research and progress of renal artery denervation in the treatment of hypertension.
文章引用:张晓东, 卢祥云, 武双全, 于泓. 肾动脉消融去交感神经术治疗高血压研究进展[J]. 临床医学进展, 2024, 14(7): 46-53. https://doi.org/10.12677/acm.2024.1471979

1. 引言

高血压是世界上最常见的慢性疾病危险因素之一[1],在全球范围内,约有三分之一的成年人群患有高血压病,并且全球高血压的发病率仍在持续上升[2]。根据《2017年全球疾病负担研究》,高血压是导致成年人全因死亡的首要风险因素[3]。高血压的标准治疗方案包括非药物生活方式干预和应用降压药物治疗。目前尽管有越来越多种类的降压药物,但是高血压的治疗仍然是一项挑战,服用高血压药物的依从性和费用是重要障碍[4]-[6]。临床上一部分患者可以通过生活方式干预和药物治疗干预的方式将血压控制在标准范围内,但仍有一定数量的患者无法将血压维持在140/90 mmHg以下。生活方式干预难以实施的原因包括需要患者较高的积极性,药物费用以及不良反应会进一步加剧患者的不依从性。

因此,在现有治疗方案的策略下,探索寻找传统疗法的替代方法是很有必要的。肾脏交感神经由传入和传出交感神经纤维组成,交感神经系统的过度激活在高血压的发生和发展中起着至关重要的作用,也是治疗高血压的重要干预靶点之一[7]-[9]。肾脏在全身交感系统中起着重要的作用,它接受交感神经的支配,同时也可以促进交感神经的进一步激活。阻断肾脏传入神经可以降低中枢及外周的交感神经活性,破坏传出神经可以影响肾脏对水钠的重吸收等,这些都有利于对血压的控制[7]-[9]。在过去的时间里,经导管肾动脉去交感神经术(RDN)在高血压的治疗领域方面进行了许多尝试。本文就目前RDN在高血压治疗领域方面的研究进展和存在的问题做简要综述。

2. RDN的兴起

在多种类型高血压药物治疗顽固性高血压之前,恶性高血压的治疗效果并不理想,因此,人们逐渐开始探索非药物治疗方案来控制患者的高血压,开始应用外科手段来干预高血压的发生和发展,如通过膈下内脏神经切除术来治疗恶性高血压。通过切断内脏神经和胸背交感神经链来阻断交感神经传导,从而导致血压和全身血管阻力的降低[10]。在一项大型非随机临床试验中,共有1266名患者参与了该项试验,并且进行了长达5年的随访,该试验结果表明内脏神经切除术是有益处的[11],手术治疗患者(n = 1266)与药物治疗患者(n = 467)的5年死亡率分别为19%和54%。但因术后并发症(如体位性低血压、多汗症、阳痿和尿失禁等)发生较多,且恢复较困难,导致患者耐受性较差,同时随着新的降压药物出现后,该手术方式已经很少应用。但是该试验显示去神经所带来的降压效果不能被忽略。这促使人们研发了基于导管的肾交感神经去神经化的治疗方法。

射频消融治疗是RDN治疗高血压的最常用的技术,目前经皮肾交感神经去神经术包括应用经导管引导的射频消融术,超声消融治疗和通过输液导管进行局部输注药物的药物消融治疗[12]。它们是通过血管内导管经股动脉进入肾动脉。除以上三种方式外,近几年出现了经尿道入路实现去神经的方法,虽然经尿道入路进行消融的方式尚未进行假对照试验研究,但从肾盂内进行射频消融来降低患者的高血压是可能的[13]

在最初的RDN试验中[14]-[18],应用的是单电极导管,在Schlaich等人的研究中,经皮射频消融的降压效果在顽固性高血压的患者首次得到证实[19]。随后在Krum等人研究中,应用射频消融术进行导管定向肾脏去神经,在该试验中,经皮射频消融可以使顽固性高血压患者的血压持续性下降,而且没有严重不良反应。术后15到30天,去甲肾上腺素溢出也大幅度减少[20]

3. RDN的临床证据

SYMPLICITY HTN-1是一项开放性、多中心、非随机的临床观察研究,该试验总共有153名顽固性高血压患者参与,参与者平均年龄为57 ± 11岁,女性占39%,糖尿病患者占31%,冠心病患者占22%,基线值包括平均诊室血压176/98 ± 17/15 mm Hg,平均应用5种降压药物,最初随访24个月[21],术后诊室血压分别在1、3、6、12、18和24个月降低20/10、24/11、25/11、23/11、26/14和32/14 mmHg。随后又对该人群继续随访了36个月[14],共有88例完整数据,术后诊室血压降低32.6/14.4 mmHg。然而SYMPLICITY HTN-1试验由于其为非随机对照试验,缺乏对照组,并且缺少24小时动态血压监测的数据,这都限制了结果的有效性。为进一步评估肾动脉去神经的有效性,之后便开展了SYMPLICITY HTN-2试验[22],该试验设计为随机对照试验,在106名患有顽固性高血压的患者中服用2周降压药物后,随机分配至肾动脉去神经组和单纯药物治疗组,术后36个月,收缩压下降了33 mmHg (95% CI: −40, −25, P < 0.01) ,舒张压下降了14 mmHg (95% CI: −17, −10, P < 0.01)。但是该试验设计仍有缺陷,如缺乏盲法和假对照组。虽然SYMPLICITY HTN-2试验提示RDN治疗顽固性高血压是有效的,但是随后开展的SYMPLICITY HTN-3试验并未得出RDN可有效治疗顽固性高血压的结论。SYMPLICITY HTN-3 [23]研究试验克服了之前试验的局限性,此试验为前瞻性、单盲、随机、假对照试验,但该试验并未得出肾动脉去神经术治疗顽固性高血压的有效结论。在该试验中顽固性高血压患者(N = 535)按照2:1的比例随机分配接受肾脏去神经术和假手术,在手术6个月后,去神经组患者收缩压平均下降了14.13 mmHg,假手术组患者下降了11.74 mmHg (与基线变化相对比),差异为−2.39 mmHg (95% CI: −6.89~2.12, P = 0.26),差异无统计学意义;去神经支配组患者24小时非卧床收缩压下降了6.75 mmHg,假手术组患者下降了4.79 mmHg,差异为−1.96 mmHg (95% CI: −4.97~1.06, P = 0.98),差异同样无统计学意义,两组在安全性方面也没有明显差异。该试验的结果引起了人们的关注,人们认为SYMPLICITY HTN-3实验失败的原因之一可能是在技术和程序上的一些缺陷所导致[24] [25],该研究仅要求患者在入组前接受2周的降压治疗,39%的患者在入组和随机分配后更换了药物,其中三分之一的患者至少更换了2种药物,在这个过程中就出现了在入组前服用药物达到最大耐受量这一点提出质疑,也出现了患者服用了2周降压药物是否达到了最佳的药物治疗效果这一质疑[25] [26]。该研究同时存在手术医师的操作经验不足,消融不够彻底以及药物依从性等问题[25],所以该试验结果能否否定RDN治疗顽固性高血压的效果还需要进一步研究评估证实。

SYMPLICITY试验使用的是第一代美敦力Symplicity Flex导管,该导管的周径和深度可能会导致肾脏的去神经不足,从而导致手术效果不佳,影响了SYMPLICITY HTN-3试验结果[25] [27]。为进一步探究RDN的效果,第二代Symplicity Spyral导管的研发解决了这些难题[24],这一代消融导管用于SPYRAL HTN-OFF MED试验[28]和SPYRAL HTN-ON MED试验[29]。在新一代消融导管的应用下,SPYRAL HTN-OFF MED试验(未给予药物治疗情况下行RDN术)和SPYRAL HTN-ON MED试验(给予药物治疗并监测情况下行RDN术)给我们呈现了一些研究成果,SPYRAL HTN-OFF MED试验是一项多中心、国际性、单盲、随机、假对照RDN试验,在该试验中,研究对象为未服用降压药物或已经停用降压药物、诊室收缩压在150~180 mmHg之间的高血压患者,随机分配至RDN组和假对照组,经3个月随访后,与假对照组相比,RDN组患者的诊室血压和24小时动态血压均有显著下降,诊室血压变化为−10.0/−5.3 mmHg,24小时动态血压变化为−5.5/−4.8 mmHg,而假对照组诊室血压、24小时动态血压无明显变化。SPYRAL HTN-ON MED试验同样也是一项多中心、国际性、单盲、随机、假对照RDN试验,在该试验中,研究对象为诊室收缩压在150~180 mmHg之间的高血压患者,且服用1至3种降压药物且剂量稳定至少6周,患者随机分配至RDN组和假对照组,随访6个月后,与假对照组相比,RDN组诊室血压和24小时动态血压显著下降,诊室血压变化为−6.6/−4.2 mmHg,24小时动态血压变化为−7.0/−4.3 mmHg,RDN组血压变化明显大于对照组。

从全球SYMPLICITY注册中心的长期数据来看,RDN术后对收缩压下降的效果可长达3年之久,数据包括了诊室收缩压(−16.5 ± 28.6 mmHg, P < 0.001)和24小时动态收缩压(−8.0 ± 20.0 mmHg, P < 0.001)的下降,同时RDN术后未发现长期的安全性问题,这显示了该手术的有效性和安全性[18]。在最新的荟萃研究中发现,在未得到控制的高血压患者中使用RDN可以持续降低血压,在有无药物治疗以及对三种药物有耐药性的高血压人群中,降压效果在统计学上似乎是一致的[30]

4. 适合RDN的人群

高血压的发病机制多种多样,因此任何一项单纯药物或手术治疗均不能满足所有高血压患者的需求,这就意味RDN也会存在适应症和禁忌症。若能根据RDN潜在合适的人群特征或某些有效的预测指标开展手术,则可进一步提高RDN治疗高血压的质量。在部分顽固性高血压患者中,交感神经过度激活是重要的原因[31],起初RDN的研究主要人群是难治性高血压患者,在SPYRAL HTN-ON MED试验[29]的研究结果中提示难治性高血压患者是RDN的应用候选人群之一,在SPYRAL HTN-OFF MED试验[28]中的研究结果中提示未经药物治疗的原发性高血压患者也可考虑应用RND治疗。有研究显示在单纯收缩期高血压患者中应用RND治疗后同样也取得了降压效果[32],但是总体来看非单纯收缩期高血压患者中应用RDN治疗后获益更大[33]。患者的手术意愿也是应用RDN治疗高血压的考虑原因之一,在日本的一项调查中[34],男性、年轻、家庭或诊室血压较高,用药依从性差、心力衰竭以及有药物副作用的患者更愿意选择RDN治疗。

5. RDN的即刻评价指标

SYMPLICITY HTN-3试验的一个主要经验教训是更彻底的消融与更大程度的降压具有相关性[25]。缺乏消融成功的指标,也是导致SYMPLICITY HTN-3试验研究结果阴性的原因之一。肾神经刺激、肾动脉扩张目前可作为判断消融是否成功的一种方法[35]。Gal等[36]认为高频率的肾神经刺激可作为评价手术成果的指标,在试验中电刺激肾动脉神经会引起血压的暂时升高,RDN术后这种反应减弱或者消失,显著减缓了肾神经刺激对血压的作用。在另一项对接受肾脏去神经化治疗后的患者研究中发现,动脉压的持续降低与肾脏RDN后立即进行肾脏神经刺激导致的心率和血压无急性变化之间存在很强的相关性[37]。Chen等[38]选取了28只昆明犬进行RDN,在RDN干预后的30分钟、1个月和3个月对其肾动脉造影,进行血压测量,并对肾动脉血管直径进行测量,结果显示,除了血压降低之外,RDN还可以诱导肾动脉血管显著扩张,这提示肾动脉血管舒张可以作为RDN是否成果的直接观察指标。经过肾去神经手术的结果虽然各不相同,但将预测治疗反应的标志物寻找出来是有助于将治疗目标锁定在最有可能获益的人的身上的。在一项经过RDN治疗的顽固性高血压患者的研究中发现[39],治疗前CD4和CD8效应T细胞比例越高,经过RDN治疗的患者血压降低幅度越大,这提示了对T细胞的详细分析可能有助于选择潜在的适合RDN手术的人群。

6. RDN的安全性

对于新技术来说,对人类的安全性是至关重要的,在最近的动物模型研究中记录了肾脏去神经的许多新的影响,在肾脏去神经的治疗中,主要可能面临的问题是肾动脉的狭窄和过度的低血压。肾动脉狭窄的风险因使用的设备而各有不同,但是所有的临床数据都显示不良事件的发生率非常低[40]。除此之外,在兔慢性肾病模型中同样发现了肾脏的去神经化对肾脏也有保护作用[41] [42]。在猪的高脂饮食模型中,不管是经过肾动脉外膜或者内膜的RDN术,在延缓高脂诱导的肾纤维化方面都是有效的[43]。在单侧输尿管梗阻和单侧缺血再灌注损伤的小鼠模型中,肾纤维化和细胞衰老明显增加,而经过肾脏去神经化可部分逆转这些情况[44]

7. RDN的科研进展

肾脏神经的新认知。虽然在人体中和动物模型中都发现了肾脏的去神经化可以降低血压,但是其疗效的机制仍未能具体明确。高血压的动物模型一般通过选择性的化学消融肾脏传入神经纤维,就可以使动脉压有效的降低[45]。高血压与肾脏和部分心血管系统交感神经活动过度有关,交感神经活动增强是心血管事件的一个危险因素,延髓头端腹外侧区(rostral ventrolateral medulla, RVLM)是产生和维持心交感神经和交感缩血管神经紧张性活动的重要部位,研究证明血管紧张素II (Ang II)能增强交感神经中枢RVLM神经元活性,而Ang II受体阻断剂(ARB)则能降低RVLM活性,RDN不仅损伤了肾脏交感传入、传出神经,并且导致下丘脑、RVLM神经元和全身交感神经传出神经活动减少,这都说明RVLM神经元在血压调节中的重要性[46]。研究还发现,刺激肾脏传入神经可以增加肾脏、内脏神经的活动[47]

8. 总结与展望

RDN是一种侵入性、微创、手术时间短且恢复速度较快的一种治疗高血压的手术,其安全性一直保持在人们可接受的范围,肾脏神经调节在血压变化方面起着至关重要的作用,具有广泛的临床应用前景。虽然SYMPLICITY HTN-3试验结果未达到人们的预期,但是在最近的临床试验中,去神经术在短期内有效的降低了血压,特别是在没有服用降压药物的患者中。针对于RDN,目前还有许多的问题亟待解决,如RDN术前如何有效筛查出潜在对RDN反应较好的高血压人群,识别患者的特征和反应的生物标志物等,同时还有缺乏术中有效的消融评价指标,以及术后如何预防肾脏神经再生等问题。总之,RDN是一种非常具有前景、新兴的高血压治疗手段,在未来治疗顽固性高血压方面十分具有潜力,但需要更进一步的优化和研究,使RDN成为降压工具中的新成员。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., et al. (2012) A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2224-2260.
https://doi.org/10.1016/S0140-6736(12)61766-8
[2] Kearney, P.M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P.K. and He, J. (2005) Global Burden of Hypertension: Analysis of Worldwide Data. The Lancet, 365, 217-223.
https://doi.org/10.1016/s0140-6736(05)70151-3
[3] GBD 2017 Risk Factor Collaborators (2018) Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1923-1994.
https://doi.org/10.1016/S0140-6736(18)32225-6
[4] Kirkland, E.B., Heincelman, M., Bishu, K.G., et al. (2018) Trends in Healthcare Expenditures among US Adults with Hypertension: National Estimates, 2003-2014. Journal of the American Heart Association, 7, e008731.
https://doi.org/10.1161/JAHA.118.008731
[5] Durand, H., Hayes, P., Morrissey, E.C., Newell, J., Casey, M., Murphy, A.W., et al. (2017) Medication Adherence among Patients with Apparent Treatment-Resistant Hypertension: Systematic Review and Meta-Analysis. Journal of Hypertension, 35, 2346-2357.
https://doi.org/10.1097/hjh.0000000000001502
[6] Ritchey, M., Chang, A., Powers, C., Loustalot, F., Schieb, L., Ketcham, M., et al. (2016) Vital Signs: Disparities in Antihypertensive Medication Nonadherence among Medicare Part D Beneficiaries—United States, 2014. Morbidity and Mortality Weekly Report, 65, 967-976.
https://doi.org/10.15585/mmwr.mm6536e1
[7] Grassi, G. and Ram, V.S. (2016) Evidence for a Critical Role of the Sympathetic Nervous System in Hypertension. Journal of the American Society of Hypertension, 10, 457-466.
https://doi.org/10.1016/j.jash.2016.02.015
[8] Sheng, Y. and Zhu, L. (2018) The Crosstalk between Autonomic Nervous System and Blood Vessels. International Journal of Physiology, Pathophysiology and Pharmacology, 10, 17-28.
[9] Osborn, J.W. and Foss, J.D. (2017) Renal Nerves and Long-Term Control of Arterial Pressure. Comprehensive Physiology, 7, 263-320.
https://doi.org/10.1002/cphy.c150047
[10] Peet, M.M. (1947) Results of Bilateral Supradiaphragmatic Splanchnicectomy for Arterial Hypertension. New England Journal of Medicine, 236, 270-277.
https://doi.org/10.1056/nejm194702202360802
[11] Smithwick, R.H. and Thompson, J.E. (1953) Splanchnicectomy for Essential Hypertension. Journal of the American Medical Association, 152, 1501-1504.
https://doi.org/10.1001/jama.1953.03690160001001
[12] Bunte, M.C., Infante de Oliveira, E. and Shishehbor, M.H. (2013) Endovascular Treatment of Resistant and Uncontrolled Hypertension: Therapies on the Horizon. JACC: Cardiovascular Interventions, 6, 1-9.
https://doi.org/10.1016/j.jcin.2012.09.005
[13] Hering, D., Nikoleishvili, D., Imedadze, A., Dughashvili, G., Klimiashvili, Z., Bekaia, E., et al. (2022) Transurethral Renal Pelvic Denervation: A Feasibility Trial in Patients with Uncontrolled Hypertension. Hypertension, 79, 2787-2795.
https://doi.org/10.1161/hypertensionaha.122.20048
[14] Krum, H., Schlaich, M.P., Sobotka, P.A., Böhm, M., Mahfoud, F., Rocha-Singh, K., et al. (2014) Percutaneous Renal Denervation in Patients with Treatment-Resistant Hypertension: Final 3-Year Report of the Symplicity HTN-1 Study. The Lancet, 383, 622-629.
https://doi.org/10.1016/s0140-6736(13)62192-3
[15] Esler, M.D., Krum, H., Sobotka, P.A., et al. (2010) Renal Sympathetic Denervation in Patients with Treatment-Resistant Hypertension (The Symplicity HTN-2 Trial): A Randomised Controlled Trial. The Lancet, 376, 1903-1909.
https://doi.org/10.1016/S0140-6736(10)62039-9
[16] Bakris, G.L., Townsend, R.R., Flack, J.M., et al. (2015) 12-Month Blood Pressure Results of Catheter-Based Renal Artery Denervation for Resistant Hypertension: The SYMPLICITY HTN-3 Trial. Journal of the American College of Cardiology, 65, 1314-1321.
https://doi.org/10.1016/j.jacc.2015.01.037
[17] Azizi, M., Sapoval, M., Gosse, P., Monge, M., Bobrie, G., Delsart, P., et al. (2015) Optimum and Stepped Care Standardised Antihypertensive Treatment with or without Renal Denervation for Resistant Hypertension (DENERHTN): A Multicentre, Open-Label, Randomised Controlled Trial. The Lancet, 385, 1957-1965.
https://doi.org/10.1016/s0140-6736(14)61942-5
[18] Mahfoud, F., Böhm, M., Schmieder, R., Narkiewicz, K., Ewen, S., Ruilope, L., et al. (2019) Effects of Renal Denervation on Kidney Function and Long-Term Outcomes: 3-Year Follow-Up from the Global SYMPLICITY Registry. European Heart Journal, 40, 3474-3482.
https://doi.org/10.1093/eurheartj/ehz118
[19] Schlaich, M.P., Sobotka, P.A., Krum, H., Lambert, E. and Esler, M.D. (2009) Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension. New England Journal of Medicine, 361, 932-934.
https://doi.org/10.1056/nejmc0904179
[20] Krum, H., Schlaich, M., Whitbourn, R., Sobotka, P.A., Sadowski, J., Bartus, K., et al. (2009) Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Multicentre Safety and Proof-of-Principle Cohort Study. The Lancet, 373, 1275-1281.
https://doi.org/10.1016/s0140-6736(09)60566-3
[21] Symplicity HTN-1 Investigators (2011) Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: Durability of Blood Pressure Reduction Out to 24 Months. Hypertension, 57, 911-917.
https://doi.org/10.1161/hypertensionaha.110.163014
[22] Esler, M.D., Böhm, M., Sievert, H., Rump, C.L., Schmieder, R.E., Krum, H., et al. (2014) Catheter-Based Renal Denervation for Treatment of Patients with Treatment-Resistant Hypertension: 36 Month Results from the SYMPLICITY HTN-2 Randomized Clinical Trial. European Heart Journal, 35, 1752-1759.
https://doi.org/10.1093/eurheartj/ehu209
[23] Bhatt, D.L., Kandzari, D.E. and O’Neill, W.W. (2014) A Controlled Trial of Renal Denervation for Resistant Hypertension. Journal of Vascular Surgery, 60, 266.
https://doi.org/10.1016/j.jvs.2014.05.038
[24] Osborn, J.W. and Banek, C.T. (2018) Catheter-Based Renal Nerve Ablation as a Novel Hypertension Therapy: Lost, and then Found, in Translation. Hypertension, 71, 383-388.
https://doi.org/10.1161/hypertensionaha.117.08928
[25] Kandzari, D.E., Bhatt, D.L., Brar, S., Devireddy, C.M., Esler, M., Fahy, M., et al. (2014) Predictors of Blood Pressure Response in the SYMPLICITY HTN-3 Trial. European Heart Journal, 36, 219-227.
https://doi.org/10.1093/eurheartj/ehu441
[26] Hannawi, B., Ibrahim, H. and Barker, C.M. (2015) Renal Denervation: Past, Present, and Future. Reviews in Cardiovascular Medicine, 16, 114-124.
https://doi.org/10.3909/ricm0755
[27] Tzafriri, A.R., Mahfoud, F., Keating, J.H., Markham, P.M., Spognardi, A., Wong, G., et al. (2014) Innervation Patterns May Limit Response to Endovascular Renal Denervation. Journal of the American College of Cardiology, 64, 1079-1087.
https://doi.org/10.1016/j.jacc.2014.07.937
[28] Townsend, R.R., Mahfoud, F., Kandzari, D.E., Kario, K., Pocock, S., Weber, M.A., et al. (2017) Catheter-Based Renal Denervation in Patients with Uncontrolled Hypertension in the Absence of Antihypertensive Medications (SPYRAL HTN-OFF MED): A Randomised, Sham-Controlled, Proof-of-Concept Trial. The Lancet, 390, 2160-2170.
https://doi.org/10.1016/S0140-6736(17)32281-X
[29] Kandzari, D.E., Böhm, M., Mahfoud, F., et al. (2018) Effect of Renal Denervation on Blood Pressure in the Presence of Antihypertensive Drugs: 6-Month Efficacy and Safety Results from the SPYRAL HTN-ON MED Proof-of-Concept Randomised Trial. The Lancet, 391, 2346-2355.
https://doi.org/10.1016/S0140-6736(18)30951-6
[30] Sharp, A.S.P., Sanderson, A., Hansell, N., Reddish, K., Miller, P., Moss, J., et al. (2024) Renal Denervation for Uncontrolled Hypertension: A Systematic Review and Meta-Analysis Examining Multiple Subgroups. Journal of Hypertension, 42, 1133-1144.
https://doi.org/10.1097/hjh.0000000000003727
[31] Brouwers, S., Sudano, I., Kokubo, Y. and Sulaica, E.M. (2021) Arterial Hypertension. The Lancet, 398, 249-261.
https://doi.org/10.1016/s0140-6736(21)00221-x
[32] Fengler, K., Rommel, K.-P., Lapusca, R., Blazek, S., Besler, C., Hartung, P., et al. (2019) Renal Denervation in Isolated Systolic Hypertension Using Different Catheter Techniques and Technologies: Insights from a Randomized Trial. Hypertension, 74, 341-348.
https://doi.org/10.1161/hypertensionaha.119.13019
[33] Doumas, M., Papademetriou, V. and Tsioufis, C. (2019) Renal Sympathetic Denervation in Isolated Systolic Hypertension: Justified Exclusion? Hypertension, 74, 255-256.
https://doi.org/10.1161/hypertensionaha.119.13168
[34] Kario, K., Kagitani, H., Hayashi, S., Hanamura, S., Ozawa, K. and Kanegae, H. (2021) A Japan Nationwide Web-Based Survey of Patient Preference for Renal Denervation for Hypertension Treatment. Hypertension Research, 45, 232-240.
https://doi.org/10.1038/s41440-021-00760-9
[35] Murai, H., Okuyama, Y., Sakata, Y., Kaneko, S., Hamaoka, T., Okabe, Y., et al. (2015) Different Responses of Arterial Blood Pressure to Electrical Stimulation of the Renal Artery in Patients with Resistant Hypertension. International Journal of Cardiology, 190, 296-298.
https://doi.org/10.1016/j.ijcard.2015.04.196
[36] Gal, P., de Jong, M.R., Smit, J.J.J., et al. (2015) Blood Pressure Response to Renal Nerve Stimulation in Patients Undergoing Renal Denervation: A Feasibility Study. Journal of Human Hypertension, 29, 292-295.
https://doi.org/10.1038/jhh.2014.91
[37] Hoogerwaard, A.F., Adiyaman, A., de Jong, M.R., et al. (2021) Renal Nerve Stimulation: Complete versus Incomplete Renal Sympathetic Denervation. Blood Pressure, 30, 376-385.
https://doi.org/10.1080/08037051.2021.1982376
[38] Chen, W., Du, H., Lu, J., et al. (2016) Renal Artery Vasodilation May Be an Indicator of Successful Sympathetic Nerve Damage during Renal Denervation Procedure. Scientific Reports, 6, Article No. 37218.
https://doi.org/10.1038/srep37218
[39] Kantauskaite, M., Vonend, O., Yakoub, M., Heilmann, P., Maifeld, A., Minko, P., et al. (2023) The Effect of Renal Denervation on T Cells in Patients with Resistant Hypertension. International Journal of Molecular Sciences, 24, Article 2493.
https://doi.org/10.3390/ijms24032493
[40] Townsend, R.R., Walton, A., Hettrick, D.A., Hickey, G.L., Weil, J., Sharp, A.S.P., et al. (2020) Review and Meta-Analysis of Renal Artery Damage Following Percutaneous Renal Denervation with Radiofrequency Renal Artery Ablation. EuroIntervention, 16, 89-96.
https://doi.org/10.4244/EIJ-D-19-00902
[41] Sata, Y., Burke, S.L., Gueguen, C., et al. (2020) Contribution of the Renal Nerves to Hypertension in a Rabbit Model of Chronic Kidney Disease. Hypertension, 76, 1470-1479.
https://doi.org/10.1161/HYPERTENSIONAHA.120.15769
[42] Sata, Y., Burke, S.L., Eikelis, N., Watson, A.M.D., Gueguen, C., Jackson, K.L., et al. (2021) Renal Deafferentation Prevents Progression of Hypertension and Changes to Sympathetic Reflexes in a Rabbit Model of Chronic Kidney Disease. Hypertension, 78, 1310-1321.
https://doi.org/10.1161/HYPERTENSIONAHA.121.17037
[43] Zhu, B., Liu, Y., Qi, D., Zhao, L., Yang, X., Su, E., et al. (2022) Renal Interstitial Fibrosis Is Reduced in High-Fat Diet-Induced Obese Pigs following Renal Denervation from the Intima and Adventitia of the Renal Artery. Kidney & Blood Pressure Research, 47, 135-146.
https://doi.org/10.1159/000521100
[44] Li, Q., Deng, Y., Liu, L., Zhang, C., Cai, Y., Zhang, T., et al. (2022) Sympathetic Denervation Ameliorates Renal Fibrosis via Inhibition of Cellular Senescence. Frontiers in Immunology, 12, Article 823935.
https://doi.org/10.3389/fimmu.2021.823935
[45] Banek, C.T., Gauthier, M.M., Baumann, D.C., Van Helden, D., Asirvatham-Jeyaraj, N., Panoskaltsis-Mortari, A., et al. (2018) Targeted Afferent Renal Denervation Reduces Arterial Pressure But Not Renal Inflammation in Established DOCA-Salt Hypertension in the Rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 314, R883-R891.
https://doi.org/10.1152/ajpregu.00416.2017
[46] Kumagai, H., Oshima, N., Matsuura, T., Iigaya, K., et al. (2012) Importance of Rostral Ventrolateral Medulla Neurons in Determining Efferent Sympathetic Nerve Activity and Blood pressure. Hypertension Research, 35, 132-141.
https://doi.org/10.1038/hr.2011.208
[47] Ong, J., Kinsman, B.J., Sved, A.F., Rush, B.M., Tan, R.J., Carattino, M.D., et al. (2019) Renal Sensory Nerves Increase Sympathetic Nerve Activity and Blood Pressure in 2-Kidney 1-Clip Hypertensive Mice. Journal of Neurophysiology, 122, 358-367.
https://doi.org/10.1152/jn.00173.2019