|
[1]
|
Avioli, L.V. (1976) Senile and Postmenopausal Osteoporosis. Advances in Internal Medicine, 21, 391-415.
|
|
[2]
|
王卢凤, 艾丽斐然·艾克帕尔, 段丽侠, 等. 特纳综合征与骨质疏松症的研究进展[J]. 中国骨质疏松杂志, 2024, 30(6): 905-909.
|
|
[3]
|
Fallon, M.D., Whyte, M.P., Craig, R.B. and Teitelbaum, S.L. (1983) Mast-Cell Proliferation in Postmenopausal Osteoporosis. Calcified Tissue International, 35, 29-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fischer, V. and Haffner-Luntzer, M. (2022) Interaction between Bone and Immune Cells: Implications for Postmenopausal Osteoporosis. Seminars in Cell & Developmental Biology, 123, 14-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Romas, E. and Martin, T.J. (1997) Cytokines in the Pathogenesis of Osteoporosis. Osteoporosis International, 7, 47-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Thulkar, J., Singh, S., Sharma, S. and Thulkar, T. (2016) Preventable Risk Factors for Osteoporosis in Postmenopausal Women: Systematic Review and Meta-Analysis. Journal of Mid-Life Health, 7, 108-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ichimura, K. (2010) Mechanism of Nasal Obstruction in Patients with Allergic Rhinitis. Clinical & Experimental Allergy Reviews, 10, 20-27. [Google Scholar] [CrossRef]
|
|
[8]
|
Kaji, H. (2016) Effects of Myokines on Bone. BoneKEy Reports, 5, Article 826. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fischer, V. and Haffner-Luntzer, M. (2022) Interaction between Bone and Immune Cells: Implications for Postmenopausal Osteoporosis. Seminars in Cell & Developmental Biology, 123, 14-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dou, C., Ding, N., Zhao, C., Hou, T., Kang, F., Cao, Z., et al. (2017) Estrogen Deficiency-Mediated M2 Macrophage Osteoclastogenesis Contributes to M1/M2 Ratio Alteration in Ovariectomized Osteoporotic Mice. Journal of Bone and Mineral Research, 33, 899-908. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Breuil, V., Ticchioni, M., Testa, J., Roux, C.H., Ferrari, P., Breittmayer, J.P., et al. (2009) Immune Changes in Post-Menopausal Osteoporosis: The Immunos Study. Osteoporosis International, 21, 805-814. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kitaura, H. (2005) M-CSF Mediates TNF-Induced Inflammatory Osteolysis. Journal of Clinical Investigation, 115, 3418-3427. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Börjesson, A.E., Lagerquist, M.K., Windahl, S.H. and Ohlsson, C. (2013) The Role of Estrogen Receptor Α in the Regulation of Bone and Growth Plate Cartilage. Cellular and Molecular Life Sciences, 70, 4023-4037. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tracey, K.J. and Cerami, A. (1993) Tumor Necrosis Factor, Other Cytokines and Disease. Annual Review of Cell Biology, 9, 317-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zheng, S.X., Vrindts, Y., Lopez, M., De Groote, D., Zangerle, P.F., Collette, J., et al. (1997) Increase in Cytokine Production (IL-1β, IL-6, TNF-Α But Not IFN-γ, GM-CSF or LIF) by Stimulated Whole Blood Cells in Postmenopausal Osteoporosis. Maturitas, 26, 63-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pietschmann, P., Grisar, J., Thien, R., Willheim, M., Kerschan-Schindl, K., Preisinger, E., et al. (2001) Immune Phenotype and Intracellular Cytokine Production of Peripheral Blood Mononuclear Cells from Postmenopausal Patients with Osteoporotic Fractures. Experimental Gerontology, 36, 1749-1759. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Schett, G. (2008) Review: Immune Cells and Mediators of Inflammatory Arthritis. Autoimmunity, 41, 224-229. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Fang, H., Zhang, H., Wang, Z., Zhou, Z., Li, Y. and Lu, L. (2019) Systemic Immune‐inflammation Index Acts as a Novel Diagnostic Biomarker for Postmenopausal Osteoporosis and Could Predict the Risk of Osteoporotic Fracture. Journal of Clinical Laboratory Analysis, 34, e23016. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
孔德策, 杨铁毅, 邵进. 绝经后骨质疏松骨代谢标志物研究进展[J]. 国际骨科学杂志, 2016, 37(1): 36-41.
|
|
[20]
|
Diker-Cohen, T., Rosenberg, D., Avni, T., Shepshelovich, D., Tsvetov, G. and Gafter-Gvili, A. (2020) Risk for Infections during Treatment with Denosumab for Osteoporosis: A Systematic Review and Meta-Analysis. The Journal of Clinical Endocrinology & Metabolism, 105, 1641-1658. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Tripto-Shkolnik, L., Rouach, V., Marcus, Y., Rotman-Pikielny, P., Benbassat, C. and Vered, I. (2018) Vertebral Fractures Following Denosumab Discontinuation in Patients with Prolonged Exposure to Bisphosphonates. Calcified Tissue International, 103, 44-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ruggiero, S.L. (2008) Bisphosphonate-Related Osteonecrosis of the Jaws. Compendium of Continuing Education in Dentistry, 29, 96-98.
|
|
[23]
|
Novack, D.V. and Teitelbaum, S.L. (2008) The Osteoclast: Friend or Foe? Annual Review of Pathology: Mechanisms of Disease, 3, 457-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Tashjian, A.H. and Gagel, R.F. (2006) Teriparatide [Human PTH(1-34)]: 2.5 Years of Experience on the Use and Safety of the Drug for the Treatment of Osteoporosis. Journal of Bone and Mineral Research, 21, 354-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hodsman, A.B., Bauer, D.C., Dempster, D.W., Dian, L., Hanley, D.A., Harris, S.T., et al. (2005) Parathyroid Hormone and Teriparatide for the Treatment of Osteoporosis: A Review of the Evidence and Suggested Guidelines for Its Use. Endocrine Reviews, 26, 688-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Tsai, J.N., Nishiyama, K.K., Lin, D., Yuan, A., Lee, H., Bouxsein, M.L., et al. (2017) Effects of Denosumab and Teriparatide Transitions on Bone Microarchitecture and Estimated Strength: The DATA-Switch HR-pQCT Study. Journal of Bone and Mineral Research, 32, 2001-2009. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
陈如阳, 严育宏, 吴洁丽, 杜珂珂. 自然绝经后女性甲状腺功能亢进与骨代谢的相关性分析[J]. 中国妇幼保健, 2020, 35(22): 4235-4237. [Google Scholar] [CrossRef]
|
|
[28]
|
Kimble, R.B., Bain, S. and Pacifici, R. (1997) The Functional Block of TNF but Not of IL-6 Prevents Bone Loss in Ovariectomized Mice. Journal of Bone and Mineral Research, 12, 935-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
DeSelm, C.J., Takahata, Y., Warren, J., Chappel, J.C., Khan, T., Li, X., et al. (2012) IL-17 Mediates Estrogen-Deficient Osteoporosis in an Act1‐Dependent Manner. Journal of Cellular Biochemistry, 113, 2895-2902. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Charatcharoenwitthaya, N., Khosla, S., Atkinson, E.J., McCready, L.K. and Riggs, B.L. (2007) Effect of Blockade of Tnf-Α and Interleukin-1 Action on Bone Resorption in Early Postmenopausal Women. Journal of Bone and Mineral Research, 22, 724-729. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chong, W.P., Mattapallil, M.J., Raychaudhuri, K., Bing, S.J., Wu, S., Zhong, Y., et al. (2020) The Cytokine IL-17A Limits Th17 Pathogenicity via a Negative Feedback Loop Driven by Autocrine Induction of Il-24. Immunity, 53, 384-397.E5. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Beil, F.T., Barvencik, F., Gebauer, M., Seitz, S., Rueger, J.M., Ignatius, A., et al. (2010) Effects of Estrogen on Fracture Healing in Mice. Journal of Trauma: Injury, Infection & Critical Care, 69, 1259-1265. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Meyer, R.A., Tsahakis, P.J., Martin, D.F., Banks, D.M., Harrow, M.E. and Kiebzak, G.M. (2001) Age and Ovariectomy Impair Both the Normalization of Mechanical Properties and the Accretion of Mineral by the Fracture Callus in Rats. Journal of Orthopaedic Research, 19, 428-435. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Claes, L., Recknagel, S. and Ignatius, A. (2012) Fracture Healing under Healthy and Inflammatory Conditions. Nature Reviews Rheumatology, 8, 133-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Fischer, V., Kalbitz, M., Müller-Graf, F., Gebhard, F., Ignatius, A., Liedert, A., et al. (2018) Influence of Menopause on Inflammatory Cytokines during Murine and Human Bone Fracture Healing. International Journal of Molecular Sciences, 19, Article 2070. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Haffner-Luntzer, M., Fischer, V., Prystaz, K., Liedert, A. and Ignatius, A. (2017) The Inflammatory Phase of Fracture Healing Is Influenced by Oestrogen Status in Mice. European Journal of Medical Research, 22, Article No. 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kaiser, K., Prystaz, K., Vikman, A., Haffner-Luntzer, M., Bergdolt, S., Strauss, G., et al. (2018) Pharmacological Inhibition of IL-6 Trans-Signaling Improves Compromised Fracture Healing after Severe Trauma. Naunyn-Schmiedeberg’s Archives of Pharmacology, 391, 523-536. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
李凝旭, 黄莺, 涂艳, 沈莹, 覃艳琼, 雷超, 柳湘洁. 绝经后女性骨密度与雌激素水平、免疫细胞因子和骨代谢指标的相关性研究[J]. 中国免疫学杂志, 2017, 33(8): 1201-1204.
|
|
[39]
|
Dar, H.Y., Shukla, P., Mishra, P.K., Anupam, R., Mondal, R.K., Tomar, G.B., et al. (2018) Lactobacillus Acidophilus Inhibits Bone Loss and Increases Bone Heterogeneity in Osteoporotic Mice via Modulating Treg-Th17 Cell Balance. Bone Reports, 8, 46-56. [Google Scholar] [CrossRef] [PubMed]
|