椭球度对层状球形液滴光学焦散结构的影响
Influence of Aspect Ratio on Optical Caustic Structure of Layered Spherical Droplets
摘要: 利用矢量光线追踪模型模拟了光线进入双层球形液滴和双层椭球液滴的传播过程。利用一阶彩虹区域相同方向出射光线数目变化的边界,得到了彩虹条纹和双曲脐条纹。双层球形液滴只有彩虹条纹,而双层椭球液滴既有彩虹条纹,也有双曲脐条纹。随着椭球度的增大,彩虹条纹的曲率先增大后减小,双曲脐条纹先向着散射角减小的方向移动,再向着散射角增大的方向移动。发现的规律可应用于双层液滴形状测量。
Abstract: Vector ray tracing model is used to simulate the propagation of light into a single-layer spherical droplet and a single-layer oblate droplet. Rainbow fringe and hyperbolic umbilic fringe are obtained by using the boundary of the number of outgoing rays in the same direction in the primary rainbow region. Single-layer spherical droplets have only rainbow fringe, which is independent of droplet size when the core-shell ratio is constant, while single-layer oblate droplets have both rainbow fringe and hyperbolic umbilic fringe. With the increasing of aspect ratio, the curvature of the rainbow fringe increases first and then decreases. The hyperbolic umbilical fringe moves first in the direction of decreasing scattering angle, and then in the direction of increasing scattering angle, which can be used to measure the shape of single-layer droplets.
文章引用:吕胜杰. 椭球度对层状球形液滴光学焦散结构的影响[J]. 建模与仿真, 2024, 13(4): 4128-4138. https://doi.org/10.12677/mos.2024.134374

1. 引言

颗粒包括固体颗粒、液滴和气泡。在大气污染检测、医疗诊断、喷雾干燥等众多领域中,对颗粒的折射率、尺寸、形状、浓度、温度及分布等参数进行定性或定量测量极为重要。液滴是生活中常见的一种颗粒,常见于各种雾化过程,通过研究液滴的光散射特性,可以得到液滴的折射率、粒径尺寸、温度等各项参数[1] [2]。随着反演算法的改进,均匀液滴的光学性质得到了广泛的研究[3]。考虑现实环境的影响,例如重力或空气动力,自然存在的液滴通常不会保持规则的球形,而是椭球形。针对球形或椭球形均匀液滴的彩虹测量已经十分成熟。而蒸发或者燃烧过程中的液滴,液滴温度呈现梯度变化,这也导致液滴折射率的梯度变化,即层状液滴/非均匀液滴,这将对液滴的光学测量产生影响。Aden和Kerker最先给出了两个同心球壳电磁波散射的解法[4]。针对方程使用过程中遇到的一些数值问题,Toon and Ackerman讨论了计算同心层状球散射强度函数的新方程,适用于所有折射率,颗粒尺寸和内核尺寸[5]。Bhandari将微小核或者薄层作为微扰从散射行为中剥离出来,给出了双层球散射的确切解析表达式[6]。除此之外,层状颗粒在吸收介质中的散射特性也被研究[7] [8]。随着理论的日益完善,对层状颗粒光散射的研究不再拘泥于理论推导。Hightower et al实验测量了固定角度层状微球的散射光强度,测量结果在外壳层较薄时与米氏理论吻合良好[9]。Lock等研究了层状液滴外壳半径不变,内核半径变化时的彩虹散射行为,并提出了层状液滴一阶彩虹的彩虹分裂现象[10]。随后,Adler and Lock et al实验观察到层状圆柱体产生两种不同散射状态的证据,涂层厚度较大时,产生双彩虹,涂层厚度小到足够充当薄膜时,产生单彩虹[11]。Hattori et al通过研究激光束在充液圆柱体中的最小偏差,提出并模拟了测量液体折射率的彩虹法,其原理与天然彩虹形成原理几乎相同[12]-[14]。利用彩虹法,测量层状圆柱体各项参数的新光学技术也被发展[15]-[17]。近年来,当折射率曲线的平方是半径的抛物线函数时,电磁平面波在折射率径向连续变化的非均匀颗粒和气泡中的散射也被研究,并与均匀球散射进行了比较[18] [19]。模拟计算方面,层状球散射算法已发展到多层球[20] [21]。在短波长的限制下,径向非均匀球的电磁散射近似理论的发展,使得了解散射过程更加容易[22]

目前已发展的彩虹测量技术多是针对均匀液滴[23] [24],对于不同光束形状和不同液滴形状的研究已基本满足生产生活的需要。但对于折射率不单一的层状液滴,其光学焦散结构(彩虹条纹和双曲脐条纹)与层状液滴参数的关系尚未被揭示。因此,需要进行一系列研究来解决这一问题。通过研究平行光束照射下层状液滴光学焦散的结果,预计可以获得层状液滴粒径、核壳比、椭球度对光学焦散结构的影响,利用所得结果进一步分析探索,获得层状液滴表征的测量技术。

2. 矢量光线追踪模型

矢量光线追踪模型可以很好地表示光在两种介质交界面发生的反射和折射现象。在矢量光线追踪模型中,光线被表示为矢量,既有大小也有方向,并沿着其传播路径进行追踪。当一束平行光束入射到球形或更为复杂形状的液滴表面时,根据两种介质的折射率,将会发生反射和折射或全反射现象。光线在层状液滴内部的传播过程比在均匀液滴内的传播过程复杂,光线的表征方式也不尽相同[25] [26]。本文采用与参考文献[25]相同的德拜级数(N, A, B)参数表征光线路径,其中N是光线在层状液滴内部经历的内反射次数,A是光线在外壳层内的弦数,B是光线在内核层内的弦数。光线(1, 2, 2)和光线(1, 4, 2)是造成双层球形液滴一阶彩虹区域孪生彩虹现象的两条主要贡献光线。基于矢量光线追踪模型,平行光入射双层球形液滴及光线(1, 2, 2)在双层球形液滴内部的传播路径如图1所示。

Figure 1. Vector ray-tracing model of the layered spherical droplets illuminated by parallel light

1. 平行光照射下层状球形液滴的矢量射线追踪模型

假设笛卡尔坐标系原点与双层球形液滴的球心重合,记为O。液滴所在的介质折射率为m1,液滴外壳层折射率m2,液滴内核层折射率m3,且m3 > m2 > m1。双层球形液滴的外壳半径为a,内核层半径为e。沿y轴正方向入射的一束平行光首先入射到液滴表面的A点,坐标为(x0, y0, z0),A点处的单位法向量为nA。根据反射定理和斯涅尔定理,我们可以得到:

L r = L 0 2( L 0 n A ) n A , L 01 = m 1 m 2 [ L 0 ( L 0 n A ) n A ] 1 ( m 1 m 2 ) 2 + ( m 1 m 2 ) 2 ( L 0 n A ) 2 n A (1)

A点折射进入液滴的光线与内核相交于B点,B点处的单位法向量为nB。可以得到折射光线L12

L 12 = m 2 m 3 [ L 01 ( L 01 n B ) n B ] 1 ( m 2 m 3 ) 2 + ( m 2 m 3 ) 2 ( L 01 n B ) 2 n B , (2)

折射光线L12在内核内部传播,与内核交于另一点CC点处的单位法向量为nC。需要注意的是,由于m3 > m2,在C点可能发生全反射,此时可以得到反射光线L23

L 23 = L 12 2( L 12 n C ) n C , (3)

同理,在DE点均有可能发生全反射,当全反射不发生时,可以分别得到对应的折射光线L34L2

L 34 = m 3 m 2 [ L 23 ( L 23 n D ) n D ] 1 ( m 3 m 2 ) 2 + ( m 3 m 2 ) 2 ( L 23 n D ) 2 n D , (4)

L 2 = m 2 m 1 [ L 34 ( L 34 n E ) n E ] 1 ( m 2 m 1 ) 2 + ( m 2 m 1 ) 2 ( L 34 n E ) 2 n E . (5)

本文散射角和仰角定义如图2。不考虑光线间的干涉,当入射光线数目无穷多时,提取L2出射光线,获取光学焦散结构。

Figure 2. Diagram defining the angle of the exiting ray

2. 出射光线角度定义示意图

3. 模拟结果

采用波长λ = 632.8 nm的平行光入射双层球形液滴,介质折射率m1 = 1,液滴外壳层折射率m2 = 1.333,液滴内核折射率m3 = 1.5不变。其中液滴外壳半径a = 100 μm,内核半径e= 80 μm。除了本文研究的光线(1, 2, 2),还研究了光线(1, 4, 2),针对两种光线在层状液滴赤道平面入射的光线,获取各自的入射角和散射角的关系,如图3所示。光线(1, 2, 2)是在内核层发生内反射,而光线(1, 4, 2)是指穿过内核层在外壳层发生内反射的光线。从图中可以看出:赤道平面中传播的光线(1, 4, 2)随着入射角度的增大,散射角会先减小后增大再减小;光线(1, 2, 2)散射角随着入射角的增大将先减小再增大,对应散射角的最小值为143.19˚。图3所示的结果与参考文献[26]中一致,这也表明了本文针对双层球形液滴编写的程序的正确性。

光学焦散结构包括彩虹条纹和双曲脐条纹,可以利用平行光照射液滴时一阶彩虹区域出射光线的边界获取。其中,一阶彩虹条纹是经历过一次内反射的散射光线在空间中的边界,亦是零条出射光线区域和两条出射光线区域的分界,双曲脐条纹是两条出射光线区域和四条出射光线区域的分界。采用波长λ = 632.8 nm的平行光入射双层球形液滴,介质折射率m1 = 1,液滴外壳层折射率m2 = 1.333,液滴内核折射率m3 = 1.5。利用矢量光线追踪模型模拟光线(1, 2, 2)在液滴内的传播过程,获得出射光线在不同散射平面仰角随出射点z坐标的演化,如图4所示,其中液滴外壳半径a = 100 μm,内核半径e = 80 μm。

Figure 3. The light scattering angle of (1, 2, 2) path and (1, 4, 2) path in the equatorial plane of a single-layer spherical droplet varies with the incidence angle

3. 双层球形液滴赤道平面中(1, 2, 2)传播路径和(1, 4, 2)传播路径的光线散射角随入射角的变化关系

Figure 4. Evolution of the elevation boundary of the exiting rays in different scattering planes and the Z-coordinate of the exiting point (a = 100 μm, e = 80 μm)

4. 双层球形液滴不同散射平面出射光线的仰角与出射点z坐标的演变过程(a = 100 μm, e = 80 μm)

同一散射截面的出射光线散射角相同,若仰角也相同则出射方向相同,但出射点坐标可以不同。根据方向相同的出射光线数目,可以对光线进行分区,而光线数目变化时的边界值,便是光学焦散结构的组成点。图4(a)~(d)分别为散射角θ = 145˚、150˚、155˚、160˚的散射平面中出射光线仰角随出射点z坐标的演变过程。由图4(a)可以看出,当φ > 12.21˚和φ < −12.21˚时,没有任何出射光线。当−12.21˚ < φ < 12.21˚时,通过局部放大图可以看出,有两条同方向的出射光线。其中,φ = −12.21˚和φ = 12.21˚就是零条出射光线和两条出射光线的仰角边界点,再结合此时的散射角θ = 145˚,便是彩虹条纹的组成点。图4(b)中,当φ > 22.4˚和φ < −22.4˚时,没有任何出射光线。同样根据局部放大图可以发现,当−22.4˚ < φ < 22.4˚时,有两条相同方向的出射光线。因此,φ = −22.4˚和φ = 22.4˚就是零条出射光线和两条出射光线的仰角边界点。结合此时的散射角θ = 150˚,便是彩虹条纹的又一个组成点。图4(c)中,当φ > 27.92˚和φ < −27.92˚时,没有任何出射光线,即零条出射光线。当−12.21˚ < φ < 12.21˚时,有两条相同方向的出射光线。此时,φ = −27.92˚和φ = 27.92˚就是零条出射光线和两条出射光线的仰角边界点,再结合散射角θ = 155˚,便组成了零条出射光线区域和两条出射光线区域的边界点,这也是彩虹条纹的组成点。图4(d)与前三幅图相比发生了的明显变化。当φ > 31.51˚和φ < −31.51˚时,没有任何出射光线,即零条出射光线。当−31.51˚ < φ < −5.569˚和5.569˚ < φ < 31.51˚时,有两条相同方向的出射光线。当−5.569˚<φ<5.569˚时,只有一条出射光线。所以,φ = −31.51˚和φ = 31.51˚就是零条出射光线和两条出射光线的仰角边界点,而φ = 5.569˚和φ = −5.569˚是一条出射光线和两条出射光线的仰角边界点。因此,θ = 160˚时,φ = −31.51˚和φ = 31.51˚才是彩虹条纹的组成点。

出射光线的每一个散射平面(除了彩虹角对应的散射平面)都可以确定出一对仰角坐标,分别对应该散射平面内出射光线的仰角最大值和仰角最小值,也是零条出射光线和两条出射光线的仰角边界点。当散射平面足够多时,这些散射角和仰角的坐标便组成了一条曲线,这条曲线也是零条出射光线区域和两条出射光线区域的边界,即彩虹条纹。在双层球形液滴的模拟中,各散射平面中并未发现两条出射光线与四条出射光线的仰角边界点,即无两条出射光线区域与四条出射光线区域的边界,也就是无双曲脐条纹。平行光照射双层球形液滴(a = 100 μm, e = 80 μm)沿(1, 2, 2)路径传播的光线,其一阶彩虹区域的光学焦散结构如图5,只包括彩虹条纹,为了便于观察,只截取仰角−10˚到10˚的范围。

Figure 5. Optical caustic structure of the primary rainbow region of a single layer spherical droplet under parallel light irradiation (a = 100 μm, e = 80 μm)

5. 平行光照射下双层球形液滴一阶彩虹区域的光学焦散结构(a = 100 μm, e = 80 μm)

保持入射波长、液滴折射率以及粒径不变,增设椭球度参数a/c,其中c是椭球在z轴上的半轴长度,a是椭球在x轴上的半轴长度且等于椭球在y轴上的半轴长度,由双层球形液滴过渡到双层椭球液滴,探究椭球度对光学焦散结构的影响。同样以光线(1, 2, 2)为研究对象。椭球度a/c = 1.17时,部分散射平面的出射光线边界如图6所示。

Figure 6. Evolution of the elevation boundary of the exiting rays from different scattering planes and the Z-coordinate of the exiting point (a/c = 1.17)

6. 不同散射平面出射光线的仰角与出射点z坐标的演变过程(a/c = 1.17)

图6(a)可以看出,在θ = 145˚的散射平面内出射光线的仰角φ > 2.436˚和φ < −2.436˚时,没有任何出射光线。当−2.436˚ < φ < 2.436˚时,有两条同方向的出射光线。其中,φ = 2.436˚和φ = −2.436˚就是零条出射光线和两条出射光线的仰角边界点,再结合此时的散射角θ = 145˚,便是彩虹条纹的组成点。

图6(b)所示θ = 150˚散射平面中,当φ > 5.116˚和φ < −5.116˚时,没有任何出射光线。当0.767˚ < φ < 5.116˚和−5.116˚ < φ < −0.767˚时,有两条相同方向的出射光线。当−0.767˚ < φ < 0.767˚时,有四条相同方向的出射光线。其中,φ = 5.116˚和φ = −5.116˚就是零条出射光线和两条出射光线的仰角边界点,结合散射角θ = 150˚,便是彩虹条纹的组成点。φ = 0.767˚和φ = −0.767˚就是两条出射光线和四条出射光线的仰角边界点,再结合散射角θ = 150˚,便是双曲脐条纹的组成点。

图6(c)所示θ = 155˚的散射平面中,当φ > 6.921˚和φ < −6.921˚时,没有任何出射光线。当3.069˚ < φ < 6.921˚和−6.921˚ < φ < −3.069˚时,有两条相同方向的出射光线。当−3.069˚ < φ < 3.069˚时,有四条相同方向的出射光线。此时,φ = 6.921˚和φ = −6.921˚就是零条出射光线和两条出射光线的仰角边界点,结合θ = 155˚,便是彩虹条纹的组成点。φ = 3.069˚和φ = −3.069˚就是两条出射光线和四条出射光线的边界点,再结合θ = 155˚,便是双曲脐条纹的组成点。

图6(c)所示θ = 160˚的散射平面中,当出射光线仰角φ >8.277˚和φ < −8.277˚时,没有任何出射光线。当3.660˚ < φ < 8.277˚和−8.277˚ < φ < −3.660˚时,有两条相同方向的出射光线。当−3.660˚ < φ < 3.660˚时,有三条相同方向的出射光线。此时,φ = 8.277˚和φ = −8.277˚就是零条出射光线和两条出射光线的仰角边界点,结合θ = 160˚,便是彩虹条纹的组成点。但是,φ = 3.660˚和φ = −3.660˚是两条出射光线和三条出射光线的仰角边界点,而不是两条出射光线和四条出射光线的仰角边界点,因此不是双曲脐条纹的组成点,这说明椭球度1.17的椭球液滴的双曲脐条纹位于散射角160˚之前。

增大椭球度至a/c = 1.20时,双层椭球液滴一阶彩虹区域的部分散射平面出射光线边界如图7。同理分析可得,在θ = 145˚的散射平面内出射光线的仰角φ = 1.153˚和φ = −1.153˚就是零条出射光线和两条出射光线的仰角边界点,结合θ = 145˚,即彩虹条纹的组成点。φ = 0.251˚和φ = −0.251˚就是两条出射光线和四条出射光线的仰角边界点,同样结合θ = 145˚,即双曲脐条纹的组成点。在θ = 150˚的散射平面内出射光线的仰角φ = 2.798˚和φ = −2.798˚就是零条出射光线和两条出射光线的仰角边界点,结合θ = 150˚,便是彩虹条纹的组成点。φ = 2.386˚和φ = −2.386˚就是两条出射光线和四条出射光线的仰角边界点,结合θ = 150˚,便是双曲脐条纹的组成点。在θ = 155˚的散射平面内,结合散射角θ = 155˚,φ = 5.441˚和φ = −5.441˚就是零条出射光线区域和两条出射光线区域的边界点,即彩虹条纹的组成点。同样,结合θ = 155˚,φ = 3.982˚和φ = −3.982˚就是两条出射光线区域和四条出射光线区域的边界点,即双曲脐条纹的组成点。θ = 160˚的散射平面内,当θ = 160˚时,φ = 5.652˚和φ = −5.652˚是零条出射光线和一条出射光线的仰角边界点,但不是零条出射光线和两条出射光线的仰角边界点,因此不是彩虹条纹的组成点。φ = 4.897˚和φ = −4.897˚是两条出射光线和三条出射光线的边界点,但不是两条出射光线和四条出射光线的边界点,因此也不是双曲脐条纹的组成点。这说明,在当前条件下,该液滴的光学焦散结构位于θ = 160˚之前。

Figure 7. Evolution of the elevation boundary of the exiting rays from different scattering planes and the Z-coordinate of the exiting point (a/c = 1.20)

7. 不同散射平面出射光线的仰角与出射点z坐标的演变过程(a/c = 1.20)

通过不同散射平面中出射光线的仰角边界,可以确定出相同方向的出射光线数目变化时的边界光线的仰角角度。在同一个散射平面中,散射角相同。因此可以确定边界出射光线的散射角和仰角。当选取的散射平面足够多时,便可通过边界出射光线的散射角和仰角获得光学焦散结构。根据以上分析,双层椭球液滴一阶彩虹区域内的光学焦散结构既包括彩虹条纹又包括双曲脐条纹。

根据上述边界分析,可以得到双层球形液滴和双层椭球液滴一阶彩虹区域的光学焦散结构,为了便于观察和比较,仅截取仰角−10˚到10˚的区域,如图8所示。由图8可以看出,当双层液滴椭球度a/c = 1.00时,即双层球形液滴,其一阶彩虹区域的光学焦散结构仅包括彩虹条纹,当增大椭球度至1.10时,尖点焦散出现,随后逐渐展开为双曲脐条纹。在椭球度增大的过程中,彩虹条纹的曲率先增大后减小,双曲脐条纹先向着散射角减小的方向移动,后向着散射角增大的方向移动。其中尖点焦散位置随椭球度的变化规律如图9所示。

Figure 8. Effect of aspect ratio on optical caustic structure in the primary rainbow region of single layer droplet

8. 椭球度对双层液滴一阶彩虹区域光学焦散结构的影响

4. 总结

波长λ = 632.8nm的平行光入射双层液滴时,本文通过一阶彩虹区域出射光线的边界获取液滴的光学焦散结构(包括彩虹条纹和双曲脐条纹),并分析了液滴椭球度对光学焦散结构的影响。双层球形液滴的光学焦散结构仅包括彩虹条纹,而双层椭球液滴包括彩虹条纹和双曲脐条纹。当核壳比保持不变时,一阶

Figure 9. The evolution of cusp caustic position with aspect ratio

9. 尖点焦散位置随椭球度的变化

彩虹条纹不随液滴半径的改变而变化,即液滴结构不变时,一阶彩虹条纹与液滴的大小无关。随着双层椭球液滴椭球度的增大,彩虹条纹曲率先增大后减小,尖点焦散逐渐展开为双曲脐条纹,且双曲脐条纹中尖点焦散对应的散射角先减小后增大。上述研究结果建立了双层椭球液滴光学焦散结构与液滴椭球度的物理关联,为双层椭球液滴的形状测量提供了理论基础。

参考文献

[1] Wang, J., Yu, H., Shen, J., Yang, B. and Tropea, C. (2020) Simulation of the Optical Caustics Associated with the Primary Rainbow for Oblate Spheroidal Drops Illuminated by a Gaussian Beam. Optics Express, 29, 377-384.
https://doi.org/10.1364/oe.412937
[2] Ni, Z., Hespel, C., Han, K. and Foucher, F. (2022) Transient Evaluations of the Temperature and Diameter of an Evaporating Droplet Stream by Using Rainbow Technique and Simulation. Experimental Thermal and Fluid Science, 131, Article 110531.
https://doi.org/10.1016/j.expthermflusci.2021.110531
[3] Wang, W., Yu, H., Shen, J. and Tropea, C. (2022) Data Inversion Algorithms for Droplet Characterization Based on Simulated Rainbows. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, Article 107986.
https://doi.org/10.1016/j.jqsrt.2021.107986
[4] Aden, A.L. and Kerker, M. (1951) Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics, 22, 1242-1246.
https://doi.org/10.1063/1.1699834
[5] Toon, O.B. and Ackerman, T.P. (1981) Algorithms for the Calculation of Scattering by Stratified Spheres. Applied Optics, 20, 3657-3660.
https://doi.org/10.1364/ao.20.003657
[6] Bhandari, R. (1986) Tiny Core or Thin Layer as a Perturbation in Scattering by a Single-Layered Sphere. Journal of the Optical Society of America A, 3, 319-328.
https://doi.org/10.1364/josaa.3.000319
[7] Yang, P., Gao, B., Wiscombe, W.J., Mishchenko, M.I., Platnick, S.E., Huang, H., et al. (2002) Inherent and Apparent Scattering Properties of Coated or Uncoated Spheres Embedded in an Absorbing Host Medium. Applied Optics, 41, 2740-2759.
https://doi.org/10.1364/ao.41.002740
[8] Sun, W., G Loeb, N. and Fu, Q. (2004) Light Scattering by Coated Sphere Immersed in Absorbing Medium: A Comparison between the FDTD and Analytic Solutions. Journal of Quantitative Spectroscopy and Radiative Transfer, 83, 483-492.
https://doi.org/10.1016/s0022-4073(03)00101-8
[9] Hightower, R.L., Lin, H.-B., Eversole, J.D., Richardson, C.B. and Campillo, A.J. (1988) Measurements of Scattering of Light from Layered Microspheres. Optics Letters, 13, 946-948.
https://doi.org/10.1364/ol.13.000946
[10] Lock, J.A., Jamison, J.M. and Lin, C. (1994) Rainbow Scattering by a Coated Sphere. Applied Optics, 33, 4677-4690.
https://doi.org/10.1364/ao.33.004677
[11] Adler, C.L., Lock, J.A., Nash, J.K. and Saunders, K.W. (2001) Experimental Observation of Rainbow Scattering by a Coated Cylinder: Twin Primary Rainbows and Thin-Film Interference. Applied Optics, 40, 1548-1558.
https://doi.org/10.1364/ao.40.001548
[12] Hattori, H., Yamanaka, H., Kurniawan, H., Yokoi, S. and Kagawa, K. (1997) Using Minimum Deviation of a Secondary Rainbow and Its Application to Water Analysis in a High-Precision, Refractive-Index Comparator for Liquids. Applied Optics, 36, 5552-5556.
https://doi.org/10.1364/ao.36.005552
[13] Hattori, H., Kakui, H., Kurniawan, H. and Kagawa, K. (1998) Liquid Refractometry by the Rainbow Method. Applied Optics, 37, 4123-4129.
https://doi.org/10.1364/ao.37.004123
[14] Hattori, H. (1999) Simulation Study on Refractometry by the Rainbow Method. Applied Optics, 38, 4037-4046.
https://doi.org/10.1364/ao.38.004037
[15] Adler, C.L., Lock, J.A., Rafferty, I.P. and Hickok, W. (2003) Twin-Rainbow Metrology. I. Measurement of the Thickness of a Thin Liquid Film Draining under Gravity. Applied Optics, 42, 6584-6594.
https://doi.org/10.1364/ao.42.006584
[16] Adler, C.L., Lock, J.A. and Stone, B.R. (1998) Rainbow Scattering by a Cylinder with a Nearly Elliptical Cross Section. Applied Optics, 37, 1540-1550.
https://doi.org/10.1364/ao.37.001540
[17] Adler, C.L., Phipps, D., Saunders, K.W., Nash, J.K. and Lock, J.A. (2001) Supernumerary Spacing of Rainbows Produced by an Elliptical-Cross-Section Cylinder II Experiment. Applied Optics, 40, 2535-2545.
https://doi.org/10.1364/ao.40.002535
[18] Lock, J.A., Laven, P. and Adam, J.A. (2015) Scattering of a Plane Electromagnetic Wave by a Generalized Luneburg Sphere—Part 1: Ray Scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 162, 154-163.
https://doi.org/10.1016/j.jqsrt.2015.02.013
[19] Laven, P., Lock, J.A. and Adam, J.A. (2015) Scattering of a Plane Electromagnetic Wave by a Generalized Luneburg Sphere—Part 2: Wave Scattering and Time-Domain Scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 162, 164-174.
https://doi.org/10.1016/j.jqsrt.2015.02.012
[20] Li, R. and Li, B.Q. (2022) Efficient Progressive Algorithm for Light Scattering of a Multilayered Concentric Nanoparticle. Applied Optics, 61, 10556-10566.
https://doi.org/10.1364/ao.473471
[21] Li, R. and Li, B.Q. (2023) Progressive Algorithm for the Scattering of Electromagnetic Waves by a Multilayered Eccentric Sphere. Applied Optics, 62, 5588-5597.
https://doi.org/10.1364/ao.493117
[22] Lock, J.A. (2017) Electromagnetic Scattering of a Plane Wave by a Radially Inhomogeneous Sphere in the Short Wavelength Limit. Journal of Quantitative Spectroscopy and Radiative Transfer, 202, 126-135.
https://doi.org/10.1016/j.jqsrt.2017.07.027
[23] Yu, H., Xu, F. and Tropea, C. (2013) Simulation of Optical Caustics Associated with the Secondary Rainbow of Oblate Droplets. Optics Letters, 38, 4469-4472.
https://doi.org/10.1364/ol.38.004469
[24] Yu, H., Shen, J., Tropea, C. and Xu, F. (2019) Model for Computing Optical Caustic Partitions for the Primary Rainbow from Tilted Spheriodal Drops. Optics Letters, 44, 823-826.
https://doi.org/10.1364/ol.44.000823
[25] Lock, J.A. and Laven, P. (2012) Understanding Light Scattering by a Coated Sphere Part 1: Theoretical Considerations. Journal of the Optical Society of America A, 29, 1489-1497.
https://doi.org/10.1364/josaa.29.001489
[26] Mengran, Z., Qieni, L., Hongxia, Z. and Yinxin, Z. (2014) Coated Sphere Scattering by Geometric Optics Approximation. Journal of the Optical Society of America A, 31, 2160-2169.
https://doi.org/10.1364/josaa.31.002160