|
[1]
|
Born, M. and Wolf, E. (2013) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier.
|
|
[2]
|
Haas, B., Matson, J., DiRita, V. and Biteen, J. (2014) Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology. Molecules, 19, 12116-12149. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., et al. (2006) Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science, 313, 1642-1645. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hess, S.T., Girirajan, T.P.K. and Mason, M.D. (2006) Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophysical Journal, 91, 4258-4272. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rust, M.J., Bates, M. and Zhuang, X. (2006) Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM). Nature Methods, 3, 793-796. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sigal, Y.M., Zhou, R. and Zhuang, X. (2018) Visualizing and Discovering Cellular Structures with Super-Resolution Microscopy. Science, 361, 880-887. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Testa, I., Schönle, A., Middendorff, C.V., Geisler, C., Medda, R., Wurm, C.A., et al. (2008) Nanoscale Separation of Molecular Species Based on Their Rotational Mobility. Optics Express, 16, 21093-21104. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dale, R.E., Hopkins, S.C., an der Heide, U.A., Marszałek, T., Irving, M. and Goldman, Y.E. (1999) Model-Independent Analysis of the Orientation of Fluorescent Probes with Restricted Mobility in Muscle Fibers. Biophysical Journal, 76, 1606-1618. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, Y., Almassalha, L.M., Chandler, J.E., Zhou, X., Stypula-Cyrus, Y.E., Hujsak, K.A., et al. (2017) The Effects of Chemical Fixation on the Cellular Nanostructure. Experimental Cell Research, 358, 253-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Stallinga, S. and Rieger, B. (2010) Accuracy of the Gaussian Point Spread Function Model in 2D Localization Microscopy. Optics Express, 18, 24461-24476. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Smith, C.S., Joseph, N., Rieger, B. and Lidke, K.A. (2010) Fast, Single-Molecule Localization that Achieves Theoretically Minimum Uncertainty. Nature Methods, 7, 373-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Backlund, M.P., Lew, M.D., Backer, A.S., Sahl, S.J. and Moerner, W.E. (2013) The Role of Molecular Dipole Orientation in Single-Molecule Fluorescence Microscopy and Implications for Super-Resolution Imaging. ChemPhysChem, 15, 587-599. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mortensen, K.I., Churchman, L.S., Spudich, J.A. and Flyvbjerg, H. (2010) Optimized Localization Analysis for Single-Molecule Tracking and Super-Resolution Microscopy. Nature Methods, 7, 377-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fourkas, J.T. (2001) Rapid Determination of the Three-Dimensional Orientation of Single Molecules. Optics Letters, 26, 211-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lethiec, C., Laverdant, J., Vallon, H., Javaux, C., Dubertret, B., Frigerio, J.-M., et al. (2014) Measurement of Three-Dimensional Dipole Orientation of a Single Fluorescent Nanoemitter by Emission Polarization Analysis. Physical Review X, 4, Article 021037. [Google Scholar] [CrossRef]
|
|
[16]
|
Harms, G.S., Sonnleitner, M., Schütz, G.J., Gruber, H.J. and Schmidt, T. (1999) Single-Molecule Anisotropy Imaging. Biophysical Journal, 77, 2864-2870. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhanghao, K., Chen, L., Yang, X.-S., Wang, M.-Y., Jing, Z.-L., Han, H.-B., et al. (2016) Super-Resolution Dipole Orientation Mapping via Polarization Demodulation. Light: Science & Applications, 5, e16166. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Schütz, G.J., Schindler, H. and Schmidt, T. (1997) Imaging Single-Molecule Dichroism. Optics Letters, 22, 651-653. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Enderlein, J., Toprak, E. and Selvin, P.R. (2006) Polarization Effect on Position Accuracy of Fluorophore Localization. Optics Express, 14, 8111-8120. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Engelhardt, J., Keller, J., Hoyer, P., Reuss, M., Staudt, T. and Hell, S.W. (2010) Molecular Orientation Affects Localization Accuracy in Superresolution Far-Field Fluorescence Microscopy. Nano Letters, 11, 209-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhang, Q., Yu, H., Barbiero, M., Wang, B. and Gu, M. (2019) Artificial Neural Networks Enabled by Nanophotonics. Light: Science & Applications, 8, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Angel, J.R.P., Wizinowich, P., Lloyd-Hart, M. and Sandler, D. (1990) Adaptive Optics for Array Telescopes Using Neural-Network Techniques. Nature, 348, 221-224. [Google Scholar] [CrossRef]
|
|
[24]
|
Barrett, T.K. and Sandler, D.G. (1993) Artificial Neural Network for the Determination of Hubble Space Telescope Aberration from Stellar Images. Applied Optics, 32, 1720-1727. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sandler, D.G., Barrett, T.K., Palmer, D.A., Fugate, R.Q. and Wild, W.J. (1991) Use of a Neural Network to Control an Adaptive Optics System for an Astronomical Telescope. Nature, 351, 300-302. [Google Scholar] [CrossRef]
|
|
[26]
|
Nehme, E., Weiss, L.E., Michaeli, T. and Shechtman, Y. (2018) Deep-STORM: Super-Resolution Single-Molecule Microscopy by Deep Learning. Optica, 5, 458-464. [Google Scholar] [CrossRef]
|
|
[27]
|
Ouyang, W., Aristov, A., Lelek, M., Hao, X. and Zimmer, C. (2018) Deep Learning Massively Accelerates Super-Resolution Localization Microscopy. Nature Biotechnology, 36, 460-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xin, Q., Ju, G., Zhang, C. and Xu, S. (2019) Object-Independent Image-Based Wavefront Sensing Approach Using Phase Diversity Images and Deep Learning. Optics Express, 27, 26102-26119. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Dzyuba, A.P. (2019) Optical Phase Retrieval with the Image of Intensity in the Focal Plane Based on the Convolutional Neural Networks. Journal of Physics: Conference Series, 1368, Article 022055. [Google Scholar] [CrossRef]
|
|
[30]
|
Ma, H., Liu, H., Qiao, Y., Li, X. and Zhang, W. (2019) Numerical Study of Adaptive Optics Compensation Based on Convolutional Neural Networks. Optics Communications, 433, 283-289. [Google Scholar] [CrossRef]
|
|
[31]
|
Möckl, L., Petrov, P.N. and Moerner, W.E. (2019) Accurate Phase Retrieval of Complex 3D Point Spread Functions with Deep Residual Neural Networks. Applied Physics Letters, 115, Article 251106. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jouchet, P., Roy, A.R. and Moerner, W.E. (2023) Combining Deep Learning Approaches and Point Spread Function Engineering for Simultaneous 3D Position and 3D Orientation Measurements of Fluorescent Single Molecules. Optics Communications, 542, Article 129589. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wu, T., Lu, J. and Lew, M.D. (2022) Dipole-Spread-Function Engineering for Simultaneously Measuring the 3D Orientations and 3D Positions of Fluorescent Molecules. Optica, 9, 505-511. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Vanberg, P.-O., de Xivry, G.O., Absil, O. and Louppe, G. (2019) Machine Learning for Image-Based Wavefront Sensing. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, 8-14 December 2019, 1-6.
|
|
[35]
|
Enderlein, J. (2000) Theoretical Study of Detection of a Dipole Emitter through an Objective with High Numerical Aperture. Optics Letters, 25, 634-636. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Rosenblatt, F. (1957) The Perceptron, a Perceiving and Recognizing Automaton Project Para. Cornell Aeronautical Laboratory.
|
|
[37]
|
Rosenblatt, F. (1958) The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65, 386-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ImageNet Classification with Deep Convolutional Neural Networks. Proceedings of the 25th International Conference on Neural Information Processing Systems, New York, 3-6 December 2012, 1097-1105.
|
|
[39]
|
Stevens, E., Antiga, L. and Viehmann, T. (2020) Deep Learning with PyTorch. Manning Publications.
|
|
[40]
|
Robbins, H. and Monro, S. (1951) A Stochastic Approximation Method. The Annals of Mathematical Statistics, 22, 400-407. [Google Scholar] [CrossRef]
|
|
[41]
|
Kingma, D.P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv Preprint arXiv:14126980.
|