|
[1]
|
Bernhard, D. and Laufer, G. (2008) The Aging Cardiomyocyte: A Mini-Review. Gerontology, 54, 24-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dai, D., Chen, T., Johnson, S.C., Szeto, H. and Rabinovitch, P.S. (2012) Cardiac Aging: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxidants & Redox Signaling, 16, 1492-1526. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Strait, J.B. and Lakatta, E.G. (2012) Aging-Associated Cardiovascular Changes and Their Relationship to Heart Failure. Heart Failure Clinics, 8, 143-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fajemiroye, J.O., Cunha, L.C.d., Saavedra-Rodríguez, R., Rodrigues, K.L., Naves, L.M., Mourão, A.A., et al. (2018) Aging-Induced Biological Changes and Cardiovascular Diseases. BioMed Research International, 2018, e7156435. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lakatta, E.G. and Levy, D. (2003) Arterial and Cardiac Aging: Major Shareholders in Cardiovascular Disease Enterprises. Circulation, 107, 346-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nakou, E., Parthenakis, F., Kallergis, E., Marketou, M., Nakos, K. and Vardas, P. (2016) Healthy Aging and Myocardium: A Complicated Process with Various Effects in Cardiac Structure and Physiology. International Journal of Cardiology, 209, 167-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cheng, S., Fernandes, V.R.S., Bluemke, D.A., McClelland, R.L., Kronmal, R.A. and Lima, J.A.C. (2009) Age-Related Left Ventricular Remodeling and Associated Risk for Cardiovascular Outcomes. Circulation: Cardiovascular Imaging, 2, 191-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Camelliti, P., Borg, T. and Kohl, P. (2005) Structural and Functional Characterisation of Cardiac Fibroblasts. Cardiovascular Research, 65, 40-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Baudino, T.A., Carver, W., Giles, W. and Borg, T.K. (2006) Cardiac Fibroblasts: Friend or Foe? American Journal of Physiology-Heart and Circulatory Physiology, 291, H1015-H1026. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Fan, D., Takawale, A., Lee, J. and Kassiri, Z. (2012) Cardiac Fibroblasts, Fibrosis and Extracellular Matrix Remodeling in Heart Disease. Fibrogenesis & Tissue Repair, 5, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Porter, K.E. and Turner, N.A. (2009) Cardiac Fibroblasts: At the Heart of Myocardial Remodeling. Pharmacology & Therapeutics, 123, 255-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lu, L., Guo, J., Hua, Y., Huang, K., Magaye, R., Cornell, J., et al. (2017) Cardiac Fibrosis in the Ageing Heart: Contributors and Mechanisms. Clinical and Experimental Pharmacology and Physiology, 44, 55-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chiao, Y.A., Ramirez, T.A., Zamilpa, R., Okoronkwo, S.M., Dai, Q., Zhang, J., et al. (2012) Matrix Metalloproteinase-9 Deletion Attenuates Myocardial Fibrosis and Diastolic Dysfunction in Ageing Mice. Cardiovascular Research, 96, 444-455. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Eghbali, M., Eghbali, M., Robinson, T.F., Seifter, S. and Blumenfeld, O.O. (1989) Collagen Accumulation in Heart Ventricles as a Function of Growth and Aging. Cardiovascular Research, 23, 723-729. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gazoti Debessa, C.R., Mesiano Maifrino, L.B. and Rodrigues de Souza, R. (2001) Age Related Changes of the Collagen Network of the Human Heart. Mechanisms of Ageing and Development, 122, 1049-1058. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lin, J., Lopez, E.F., Jin, Y., Van Remmen, H., Bauch, T., Han, H., et al. (2008) Age-Related Cardiac Muscle Sarcopenia: Combining Experimental and Mathematical Modeling to Identify Mechanisms. Experimental Gerontology, 43, 296-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Mendes, A.B.L., Ferro, M., Rodrigues, B., de Souza, M.R., Araujo, R.C. and de Souza, R.R. (2012) Quantification of Left Ventricular Myocardial Collagen System in Children, Young Adults, and the Elderly. Medicina, 72, 216-220.
|
|
[18]
|
Salcan, S., Bongardt, S., Monteiro Barbosa, D., Efimov, I.R., Rassaf, T., Krüger, M., et al. (2020) Elastic Titin Properties and Protein Quality Control in the Aging Heart. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1867, Article ID: 118532. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Horn, M.A., Graham, H.K., Richards, M.A., Clarke, J.D., Greensmith, D.J., Briston, S.J., et al. (2012) Age-Related Divergent Remodeling of the Cardiac Extracellular Matrix in Heart Failure: Collagen Accumulation in the Young and Loss in the Aged. Journal of Molecular and Cellular Cardiology, 53, 82-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Besse, S., Robert, V., Assayag, P., Delcayre, C. and Swynghedauw, B. (1994) Nonsynchronous Changes in Myocardial Collagen mRNA and Protein during Aging: Effect of DOCA-Salt Hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 267, H2237-H2244. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Biernacka, A. and Frangogiannis, N.G. (2011) Aging and Cardiac Fibrosis. Aging and disease, 2, 158-173.
|
|
[22]
|
Annoni, G., Luvarà, G., Arosio, B., Gagliano, N., Fiordaliso, F., Santambrogio, D., et al. (1998) Age-Dependent Expression of Fibrosis-Related Genes and Collagen Deposition in the Rat Myocardium. Mechanisms of Ageing and Development, 101, 57-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Mays, P.K., McAnulty, R.J., Campa, J.S. and Laurent, G.J. (1991) Age-Related Changes in Collagen Synthesis and Degradation in Rat Tissues. Importance of Degradation of Newly Synthesized Collagen in Regulating Collagen Production. Biochemical Journal, 276, 307-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Robert, V., Besse, S., Sabri, A., Silvestre, J.S., Assayag, P., Nguyen, V.T., Swynghedauw, B. and Delcayre, C. (1997) Differential Regulation of Matrix Metalloproteinases Associated with Aging and Hypertension in the Rat Heart. Laboratory Investigation, 76, 729-738.
|
|
[25]
|
Herrmann, K.L., McCulloch, A.D. and Omens, J.H. (2003) Glycated Collagen Cross-Linking Alters Cardiac Mechanics in Volume-Overload Hypertrophy. American Journal of Physiology-Heart and Circulatory Physiology, 284, H1277-H1284. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bailey, A.J., Sims, T.J., Avery, N.C. and Halligan, E.P. (1995) Non-Enzymic Glycation of Fibrous Collagen: Reaction Products of Glucose and Ribose. Biochemical Journal, 305, 385-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Achkar, A., Saliba, Y. and Fares, N. (2020) Differential Gender-Dependent Patterns of Cardiac Fibrosis and Fibroblast Phenotypes in Aging Mice. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 8282157. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Pappritz, K., Puhl, S., Matz, I., Brauer, E., Shia, Y.X., El-Shafeey, M., et al. (2023) Sex-and Age-Related Differences in the Inflammatory Properties of Cardiac Fibroblasts: Impact on the Cardiosplenic Axis and Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 10, Article 1117419. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Trial, J. and Cieslik, K.A. (2018) Changes in Cardiac Resident Fibroblast Physiology and Phenotype in Aging. American Journal of Physiology-Heart and Circulatory Physiology, 315, H745-H755. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Angelini, A., Trial, J., Ortiz-Urbina, J. and Cieslik, K.A. (2020) Mechanosensing Dysregulation in the Fibroblast: A Hallmark of the Aging Heart. Ageing Research Reviews, 63, Article ID: 101150. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Angelini, A., Trial, J., Saltzman, A.B., Malovannaya, A. and Cieslik, K.A. (2023) A Defective Mechanosensing Pathway Affects Fibroblast-to-Myofibroblast Transition in the Old Male Mouse Heart. iScience, 26, Article ID: 107283. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Cieslik, K.A., Trial, J. and Entman, M.L. (2011) Defective Myofibroblast Formation from Mesenchymal Stem Cells in the Aging Murine Heart. The American Journal of Pathology, 179, 1792-1806. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bujak, M., Kweon, H.J., Chatila, K., Li, N., Taffet, G. and Frangogiannis, N.G. (2008) Aging-Related Defects Are Associated with Adverse Cardiac Remodeling in a Mouse Model of Reperfused Myocardial Infarction. Journal of the American College of Cardiology, 51, 1384-1392. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Trial, J., Entman, M.L. and Cieslik, K.A. (2016) Mesenchymal Stem Cell-Derived Inflammatory Fibroblasts Mediate Interstitial Fibrosis in the Aging Heart. Journal of Molecular and Cellular Cardiology, 91, 28-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Shivakumar, K., Dostal, D.E., Boheler, K., Baker, K.M. and Lakatta, E.G. (2003) Differential Response of Cardiac Fibroblasts from Young Adult and Senescent Rats to ANG Ii. American Journal of Physiology-Heart and Circulatory Physiology, 284, H1454-H1459. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Izzo, C., Vitillo, P., Di Pietro, P., Visco, V., Strianese, A., Virtuoso, N., et al. (2021) The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life, 11, Article 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Anupama, V., George, M., Dhanesh, S.B., Chandran, A., James, J. and Shivakumar, K. (2016) Molecular Mechanisms in H2O2-Induced Increase in AT1 Receptor Gene Expression in Cardiac Fibroblasts: A Role for Endogenously Generated Angiotensin II. Journal of Molecular and Cellular Cardiology, 97, 295-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Oka, T., Xu, J., Kaiser, R.A., Melendez, J., Hambleton, M., Sargent, M.A., et al. (2007) Genetic Manipulation of Periostin Expression Reveals a Role in Cardiac Hypertrophy and Ventricular Remodeling. Circulation Research, 101, 313-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., et al. (2008) Periostin Is Essential for Cardiac Healingafter Acute Myocardial Infarction. The Journal of Experimental Medicine, 205, 295-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Valiathan, R.R., Marco, M., Leitinger, B., Kleer, C.G. and Fridman, R. (2012) Discoidin Domain Receptor Tyrosine Kinases: New Players in Cancer Progression. Cancer and Metastasis Reviews, 31, 295-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Labrador, J.P., Azcoitia, V., Tuckermann, J., Lin, C., Olaso, E., Mañes, S., et al. (2001) The Collagen Receptor DDR2 Regulates Proliferation and Its Elimination Leads to Dwarfism. EMBO Reports, 2, 446-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Kawai, I., Hisaki, T., Sugiura, K., Naito, K. and Kano, K. (2012) Discoidin Domain Receptor 2 (DDR2) Regulates Proliferation of Endochondral Cells in Mice. Biochemical and Biophysical Research Communications, 427, 611-617. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Olaso, E., Lin, H., Wang, L. and Friedman, S.L. (2011) Impaired Dermal Wound Healing in Discoidin Domain Receptor 2-Deficient Mice Associated with Defective Extracellular Matrix Remodeling. Fibrogenesis & Tissue Repair, 4, [page]. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Badiola, I., Villacé, P., Basaldua, I. and Olaso, E. (2011) Downregulation of Discoidin Domain Receptor 2 in A375 Human Me-lanoma Cells Reduces Its Experimental Liver Metastasis Ability. Oncology Reports, 26, 971-978.
|
|
[45]
|
Toy, K.A., Valiathan, R.R., Núñez, F., Kidwell, K.M., Gonzalez, M.E., Fridman, R., et al. (2015) Tyrosine Kinase Discoidin Domain Receptors DDR1 and DDR2 Are Coordinately Deregulated in Triple-Negative Breast Cancer. Breast Cancer Research and Treatment, 150, 9-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ushakumary, M.G., Wang, M.V.H., Titus, A.S., Zhang, J., Liu, L., et al. (2019) Discoidin Domain Receptor 2: A Determinant of Metabolic Syndrome-Associated Arterial Fibrosis in Non-Human Primates. PLOS ONE, 14, e0225911. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
George, M., Vijayakumar, A., Dhanesh, S.B., James, J. and Shivakumar, K. (2016) Molecular Basis and Functional Significance of Angiotensin II-Induced Increase in Discoidin Domain Receptor 2 Gene Expression in Cardiac Fibroblasts. Journal of Molecular and Cellular Cardiology, 90, 59-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
V, H., Titus, A.S., Cowling, R.T. and Kailasam, S. (2019) Collagen Receptor Cross-Talk Determines α-Smooth Muscle Actin-Dependent Collagen Gene Expression in Angiotensin II-Stimulated Cardiac Fibroblasts. Journal of Biological Chemistry, 294, 19723-19739. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Titus, A.S.V.H. and Kailasam, S. (2020) Coordinated Regulation of Cell Survival and Cell Cycle Pathways by DDR2-Dependent SRF Transcription Factor in Cardiac Fibroblasts. American Journal of Physiology-Heart and Circulatory Physiology, 318, H1538-H1558. [Google Scholar] [CrossRef] [PubMed]
|